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Abstract—Different methods exist for estimating trips in
public transportation systems. Some of the widely adopted
estimation strategies are based on the traceability of passenger
transfers. While these techniques have been effective in the case
of some large cities, they fall short for trip estimation in smaller
towns. This is because the underlying methodology leave aside
single-route trips information, which are the most frequent in
the latter case. In this paper we present a methodology based
on combining probability distributions defined upon alternative
partitions of the universe of possible trips. Our approach starts
from intuitions similar to the Dempster-Shafer rule, but since
in our application domain some of its basic assumptions fail
to be satisfied, we estimate probability intervals by means of
an aggregation procedure on the information of the different
sources. Samples of those intervals yield the distributions to be
used in simulation models of the behavior of the transportation
system.

Resumen—Existen diferentes métodos para estimar viajes
en sistemas de transporte público. Algunas de las estrategias
ampliamente adoptadas se basan en la trazabilidad de los
transbordos de pasajeros. Si bien este grupo de técnicas ha
resultado efectivo en el caso de ciudades de gran tamaño, no
lo ha sido igualmente para poblaciones menores. La razón es
que se deja de lado información sobre viajes de ruta simple,
usuales en ciudades más pequeñas. En este trabajo presentamos
una metodologı́a basada en combinar distribuciones de proba-
bilidad definidas sobre particiones alternativas del universo de
viajes posibles. Aunque nuestro enfoque parte de intuiciones
similares, se diferencia de la regla de Dempster-Shafer debido
a que algunos supuestos de esta no pueden ser satisfechos. En
vez de ello obtenemos intervalos de probabilidad agregando
la información de las distintas fuentes. Muestras de estos
intervalos generan las distribuciones a usarse en modelos de
simulación del comportamiento del sistema de transporte.

I. INTRODUCTION

Human mobility is perhaps the most important factor
in urban planning, and therefore an adequate assessment
of public transportation systems is essential for a com-
prehensive city organization. However, this assessment is
sometimes difficult or confusing, in particular to estimate the
present and future mobility requirements. For this reason,
urban growth is usually not accompanied by a sensible
reconfiguration of the public transportation facilities, which
in turn leads to a significant decrease in the actual and

perceived quality of the transportation services and the
overall quality of life [1].

As part of the basic urban infrastructure, large cities have
public transportation networks, in which several kinds of
transportation modes may intervene, for instance subway,
buses, or trains. The widespread use of smart card automated
fare collection systems makes available relevant information
that can be mined to estimate quite accurately urban mobility
patterns. For example, if a user consistently uses the same
card along a period of time, useful transportation parame-
ters like daily uses, waiting times, and transfer times and
places can be easily gathered. This information, collected in
massive amounts, and together with reasonable assumptions,
provides sufficiently detailed data about model parameters
that can be used to assess the efficiency of the transportation
network as a whole, as well as to spot specific bottlenecks,
and to suggest policies to handle contingencies [2]–[4].

A key element in this analysis is the information about
round-trips, since the transportation infrastructure in work-
ing days is clearly used mostly by workers, students, and
in general by people subject to fixed schedules. Therefore,
one-way only transportation information is of little or no use
at all. Unfortunately, this is the only information available
in small towns where users do not transfer between different
lines, and round-trip assumptions are harder to sustain.

In those cases gathering precise and accurate transporta-
tion data (for instance, by using cameras) may be difficult
and expensive, becoming a major limiting factor to the
assessment of the effectiveness of a transportation network.
For this reason, it is not uncommon to use indirect measures
provided by data sources already available, for instance
mobile phones [5] or georeferenced social network feeds
[6], even though these sources were not initially intended
to gather transportation information . Thus, adequate data
fusion methodologies are required to combine these hetero-
geneous information sources into a unified model that may
serve as a trustable aid in urban planification.

In this paper we develop a methodology for data fusion,
which is based on a particular combination of probabil-
ity distributions defined upon alternative partitions of the



universe of possible trips. The methodology is applied to
a specific context in the Puerto Madryn city, Argentina.
Our results show that, lacking the accurate information
that can be obtained in large cities, our methodology may
provide an adequate assessment of mobility patterns and
the effectiveness of a public transportation infrastructure in
small towns.

II. PRELIMINARY DEFINITIONS

Let R = {si}|R|i=1 be the class of possible stops. The set of
possible trips is T = {(si, sj) : i < j}, where a pair (si, sj)
indicates that si and sj are, respectively, the boarding and
descending stops1. Then, the set of possible trips can be
partitioned in the two following ways:

Definition 1. For b, a = 1, . . . , |R|

TB = {Tb} where Tb = {(sb, ·) : (sb, ·) ∈ T}

TA = {Ta} where Ta = {(·, sa) : (·, sa) ∈ T}

In words, Tb ∈ TB is the set of all possible trips that
start at stop sb. In the same way, Ta ∈ TA is the set of all
possible trips that end at stop sa. It is easy to see that, TB
and TA constitute different partitions of T .

The available information sources are indeed associated
to these partitions of T . We define F = {fB , fA}, with fB :
TB → R+ and fA : TA → R+, as the set of information
functions associated to the partitions2. In our particular case,
fB(Tb) provides the number people boarding at stop sb.
Similarly fA(Ta) provides the number of people arriving at
stop sa.

Under the conditions already stated, we can regard the
information structure as a directed weighted graph of the
form G = 〈R, T,w〉 where w is an unknown function such
that w : T → R+ and w(t) is the proportion or weight of
the trips t over the total trips in T . The goal of this research
is to present a methodology to find an estimation w′ ' w
given the information gathered by the functions in F .

Since we focus on the graph structure, where w can be
modeled as a probability function, we add the constraint
w : T → [0, 1], with

∑
t∈T

w(t) = 1. In addition, we use the

notation [w] to refer the adjacency matrix of G formed by
the values of w.

III. EVIDENCE AGGREGATION

A possible approach to the approximation of w is through
the application of Dempster’s Rule of Combination, which
allows to define mass functions up from information func-
tions. In turn, the mass functions make it possible to
construct belief functions [7].

1The condition that each pair of stops constitutes a potential trip holds
in railroad lines or similar two-way modes of transportation with identical
fixed stops. In small towns, typical bus routes have very similar round-trip
routes. This condition is a reasonable approximation to the real world case
we intend to analyze.

2The existence of more than one information source associated to the
partition functions is feasible (and even desirable) but again for simplicity
we will consider here only one information source.

Definition 2. Given Tk ∈ 2T . Let mB : 2T → [0, 1] and
mA : 2T → [0, 1] such that

mB(Tk) =


fB(Tk)∑

Tb∈TB

fB(Tb)
if Tk ∈ TB

0 otherwise

mA(Tk) =


fA(Tk)∑

Ta∈TA

fA(Ta)
if Tk ∈ TA

0 otherwise

Theorem 1. Given mB and mA as defined above, then mB

and mA are mass functions over T .

Proof: We need to prove:

• M1. mB(∅) = 0 and mA(∅) = 0
• M2.

∑
Tk∈2T

mB(Tk) = 1 and
∑

Tk∈2T
mA(Tk) = 1

It is easy to see that M1 holds by definition. To see that M2
holds, notice that∑

Tk∈2T
mB(Tk) =

∑
Tk∈TB

mB(Tk)

=
∑

Tk∈TB

fB(Tk)∑
Tb∈TB

fB(Tb)

=
1∑

Tb∈TB

fB(Tb)

∑
Tk∈TB

fB(Tk)

= 1.

With the same reasoning line, we may show∑
Tk∈2T

mA(Tk) = 1. Then mB and mA are mass functions

over T .

Definition 3. Given Tk ∈ 2T . Let BelB : 2T → [0, 1] and
BelA : 2T → [0, 1] such that

BelB(Tk) =
∑

U⊆Tk

mB(U)

BelA(Tk) =
∑

U⊆Tk

mA(U)

Definition 4 (Dempster’s Rule of Combination [8]). Given
BelB and BelA and their respective mass functions mB and
mA. We define (mB ⊕mA)(∅) = 0 and, for every Tk ∈ 2T

such that Tk 6= ∅

(mB ⊕mA)(Tk) =
∑

{U,V |U∩V=Tk}

mB(U)mA(V )

c

where c =
∑
{U,V |U∩V 6=∅}mB(U)mA(V )

Finally, we have to prove that c > 0 for all Tk ∈ 2T , to
make sure that BelB and BelA are combinable. Afterward,
as mB(Tk) > 0 iff Tk ∈ TB , mA(Tk) > 0 iff Tk ∈ TA and
TB∩TA = ∅, there does not exist Tk such that mB(Tk) > 0
and mA(Tk) > 0; then, c = 0 and BelB and BelA cannot
be combined.

In conclusion, the Dempster-Shafer approach is unsuitable
for our problem.



IV. PROBABILITIES

In this Section we will put forward some definitions that
settle down a relation between the weight function w and
the information functions in F .

Definition 5. Let pB : T → [0, 1] and pA : T → [0, 1] such
that:

pB(t) =
fB(Tn)∑

Tb∈TB

fB(Tb)

1

|Tn|
, where t ∈ Tn ∈ TB (1)

pA(t) =
fA(Tm)∑

Ta∈TA

fA(Ta)

1

|Tm|
, where t ∈ Tm ∈ TA (2)

The functions defined here are built taking the relative
frequencies of the sets Tn, Tm and splitting them in equal
parts over the elements of them. Applying the principle of
indifference, we hold the assumption that the probabilities
pB and pA are uniformly distributed over TB and TA
respectively.

Theorem 2. Given pB and pA as defined above, pB and
pA are probability functions over T .

Proof: We consider first pB .

∑
t∈T

pB(i, j) =
∑

t∈Tk∈TB

fB(Tk)∑
Tb∈TB

fB(Tb)

1

|Tk|

=
∑

Tk∈TB

∑
t∈Tk

fB(Tk)∑
Tb∈TB

fB(Tb)

1

|Tk|

=
∑

Tk∈TB

|Tk|
fB(Tk)∑

Tb∈TB

fB(Tb)

1

|Tk|

=
∑

Tk∈TB

fB(Tk)∑
Tb∈TB

fB(Tb)

= 1.

With the same reasoning line, we can show that∑
t∈T

pA(i, j) = 1. Then, pB and pA are probabilities over

T .
According to the literature on imprecise probabilities ( [9],

[10]), it is not feasible to define rational-valued probabilities
based on incomplete or inaccurate knowledge. Hence, we
may resort to other representations, for instance interval-
valued probabilities. Following this strategy, we use the
probabilities defined in Definition 5 to construct a inter-
val [pB(t), pA(t)] and the take w′(t) such that w′(t) ∈
[pB(t), pA(t)].

In consequence, w′(t) is given by a cloud of possible
distributions and to fully specify it an additional definition
is required. Therefore, as presented in [11] we apply the
linear opinions pool technique.

Definition 6. Let t ∈ T , and let θB , θA ∈ R+ such that
θB + θA = 1. We define

w′(t) = θBpB(t) + θApA(t)

Additionally, in some cases we simply reference θ such
that θB = θ and θA = 1− θ.

Example 1. Suppose the following matrix, where each cell
contains the number of trips performed from stop i (row) to
stop j (column), and its respective [w] as defined before.


1 2 3 4

1 10 5 20
2 15 30
3 10
4

 =⇒ [w] =


10
90

5
90

20
90

15
90

30
90
10
90


The partitions TB and TA as defined before are:
TB = {B1, B2, B3, B4} with B1 = {(1, 2), (1, 3), (1, 4)},

B2 = {(2, 3), (2, 4)}, B3 = {(3, 4)}, B4 = ∅, and
TA = {A1, A2, A3, A4}, A1 = ∅, A2 = {(1, 2)}, A3 =
{(1, 3), (2, 3)}, A4 = {(1, 4), (2, 4), (3, 4)}

Finally, applying Definition 5 with θB = θA = 1
2 , we

obtain:

[pB ] =


35
270

35
270

35
270

45
180

45
180
10
90



[pA] =


10
90

20
180

60
270

20
180

60
270
60
270



[w′] = θB [pB ] + θA [pA] =


65
540

65
540

95
540

97.5
540

127.5
540
90
540



V. RESULTS

To test the soundness of the model, we use the available
data, like manual counting of boardings and alightings on
the line of interest, origin-destination surveys and records of
central stations. By feeding a simulation model with these
datasets, we run 1000 simulations and build a hypothetical
average complete trip matrix as shown in Fig. 1a. Precisely,
the simulation is set on a bus-line with 68 stops (that is
|R| = 68) and the number of possible trips are calculated
by |R|(|R|−1)

2 giving a total of 2278. For each possible
trip, the simulation generates values representing how many
passengers made this particular one.

Since this information tends to be unavailable in practice,
we construct the functions presented in definition 5 and
compute w′. Figure 1b shows the result of the estimation.
In addition, we apply a χ2 goodness-of-fit test to check the
model as follows.

A. χ2 test

Over the results we perform a χ2 goodness-of-fit test.
Next, the computation of the χ2 indicator is given by

χ2 =
∑
t∈T

(w(t)− w′(t))2

w′(t)

Since w′(t) > 0 for all t ∈ T , we take it as denominator.
The test yields χ2 = 1.428425, with degrees of freedom



(a) [w] (b) [w′]

Fig. 1: Trips matrix by stops. θ = 0.5

(a) [w] (b) [w′]

Fig. 2: Trips matrix by neighborhoods. θ = 0.5

(2− 1)(2278− 1) = 2277 and p-value = 1. Indeed, there is
not evidence of difference between the distributions w′ and
w; then, we can say that the estimation passes the test.

In addition, in Fig. 2 we present the data grouped by
neighborhoods. The results of a χ2 test, are the same as the
former case; still, in the figure we can discern a different
matrix structure. It is possibly more appropriate to study the
appropriateness of the simulation by examining the spectrum
of this matrix, but such approach exceeds the scope of this
paper.

Finally, it is worth noting that even if the results are
positive according to the χ2 test, the figures show particular
differences between the distributions. For instance, white
areas in the real scenarios (that is, without trips) correspond
to areas with a slight noise in the estimation, indicating trips
that the real-world sample fails to capture.

VI. CONCLUSION AND FUTURE WORK

Our results suggest that the methodology proposed in this
paper leads to a model that performs sufficiently good in the
estimation of trips. In particular, it is statistically close to
the information functions provided by real data sources.

In consequence, we highlight the following aspects of our
methodology. First, unlike common practices that mainly
rely on transfers between lines or modes of transport, our
methodology is appropriate for use in small and medium
scale cities in which the ratio of single-route trips is high.
Second, it is affordable to gather the required data, which in
many cases is already available, or otherwise the gathering
process is easy to automate with low-cost devices. Lastly,
the calculation and interpretation of the results is simple,

which, together with the possibility of continuous feedback
of the demand and changes in the transport system, makes
our methodology actionable and easy to use for devising
optimization or policy-making.

At the same time, we can envision possible improvements
to the estimation. First, by adding information at the edge
level, we can refine the assumption of homogeneous distri-
butions made in definition 5; yet, this type of information
can be costly. Second, a variable distribution of θ instead of
a fixed one for all trips can be considered. Even though this
could be difficult to check, this refinement is more feasible
than the former one because the process is only needed
during the set-up of the model. In other words, variable θ
are static parameters that can be estimated through a deeper
initial inquiry. Finally, higher abstractions may be foreseen,
both in term of definitions and in the combination of the
probabilities.
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