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†“Instituto de Investigaciones en Ing. Eléctrica (IIIE) Alfredo Desages” (UNS-CONICET),
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Abstract—Accurate models for PWM modulators composed
by the parallel connection of p-th order powers followed by a
linear filter have been recently presented in the literature. In
this paper we derive closed-form expressions for the impulse
responses and frequency responses of those filters. This allows
to predict the amplitudes and frequencies of the spurious
components appearing in the baseband when using sinusoidal
inputs and also to obtain a closed-form expression for the THD.

Resumen— Recientemente se han presentado en la literatura
modelos precisos para moduladores PWM compuestos por la
conexión en paralelo de potencias de orden p seguido de un
filtro lineal. En este trabajo se derivan expresiones cerradas
para las respuestas impulsivas y respuestas en frecuencia de
los filtros. Esto permite predecir las amplitudes y frecuencias
de las componentes espurias que aparecen en la banda base
cuando se utilizan entradas sinusoidales y también obtener
una expresión cerrada para la distorsión armónica total.

I. INTRODUCTION

Pulse width modulation (PWM) has a wide range of ap-

plications, from power electronics in energy conversion [1],

to audio switching amplifiers [2] and RF power amplifiers

[3] among others.

Discrete-time nonlinear models that capture the behavior

of digital pulse width modulation in the frequency range

between DC and half the PWM frequency (baseband) have

been recently presented [4]–[7]. These models are developed

from a time-domain perspective and accurately expos the

relation between the duty cycles and the samples of the

bandlimited PWM signal. The model is composed of the

parallel connection of an static nonlinearity (power of the

input) and a linear filter conforming an structure known as

parallel Hammerstein.

Frequency analysis to obtain the spectra of PWM signals

have also been presented, for sinusoidal modulating signals

[1] and also for arbitrary, bounded, bandlimited modulating

signals [8]. In this paper, we derive closed-form formulas for

the impulse and frequency responses of the linear filters of

the PWM model. For sinusoidal inputs this model allows

to individualize the frequency and the amplitudes of the

spurious distortion components that appear in baseband due

to the PWM modulation. The mechanism by which the

“aliasing distortion” [3], [9]–[11] of the PWM modulator

is generated is also revealed.

An analytic expression for the total harmonic distortion

(THD) as a function of input amplitude (modulation index)

and input frequency is presented. Under typical operating

conditions we show that distortion is directly proportional

to the modulation index and to the square of the input

frequency. These results are compared with a numerical

simulations of the PWM modulator.

The paper is organized as follows: in Section II the

model for the PWM signal is reviewed and formulas for the

impulse responses and their frequency response are given.

The analysis in the frequency domain is presented in Section

III and the simulations in Section IV.

II. DISCRETE-TIME NONLINEAR MODEL FOR THE

DIGITAL PWM MODULATOR

Models for different types of digital PWM have been

recently presented in the literature [5], [7]. In this section

we briefly summarize one of those models and introduce

explicit expressions for the impulse responses of the digital

filters.

We assume that a discrete-time input signal −1 ≤ xn ≤ 1
is mapped into the duty-cycles wn as

wn =
(1 + xn)

2
(1)

which gives 0% duty-cycle for xn = −1 and 100% for xn =
1. This affine relation between the samples of the input sig-

nal and the duty cycles is typical of uniform PWM (UPWM).

In practical applications UPWM is performed comparing a

digital value of wn with an ascending/descending digital

counter.

The PWM signal q(t) is a two level signal taking values 0
and 1 composed of symmetric pulses centered at T = 1/fs
with width wnT . We assume, without loss of generality that

T = 1/fs = 1.

To derive the model the signal q(t) is filtered with an

ideal low pass-filter with cut-off frequency fs/2 = 0.5 and

impulse response

r(t) = sinc(t) =
sin(πt)

πt
, (2)

giving as result the bandlimited signal y(t). The discrete-

time signal yn results from sampling y(t) at fs [7]

yn =

∞∑
u=1

h2u−1,n ∗ (wn)
2u−1 (3)

where ∗ indicates the discrete-time convolution and hp,n

are the impulse responses of discrete-time filters. Due to

the symmetry of the pulses of the PWM signal only odd

powers of the duty cycles appear in (3). The discrete-time



Fig. 1. Discrete baseband model of the PWM modulator.

signal yn computed with (3) represents exactly the baseband

content of the PWM signal q(t). A block diagram for the

computation of yn is shown in Fig 1. This structure is known

as general o parallel Hammerstein model, where each branch

is composed of an static nonlinearity (power) followed by a

linear filter.

The impulse responses hp,n can be computed as

hp,n =
1

p!2p−1
r(p−1)(nT ) (4)

where r(p)(·) is the p-times derivative of r(t). Explicit

expressions for hp,n as a function of n and for different

values of p can be calculated by computing the p − 1
derivative of r(t) and by evaluating equation (4). This

expressions were tabulated for some values of p in [5], [7].

For example for p = 3, 5, and 7 they are given by

h3,n =

{
− (−1)n

12n2 , if n �= 0,

−π2/72, if n = 0,

h5,n =

{
(−1)n(−6+n2π2)

480n4 , if n �= 0,

π4/9600, if n = 0,

h7,n =

{
− (−1)n(120−20n2π2+n4π4)

53760n6 , if n �= 0,

−π6/2257920, if n = 0.

(5)

In the Appendix it is shown that a closed-form equation

for hp,n is given by

hp,n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

j(−1)n+p

pπ2pnp

p−1∑
u=0

(jπn)u

u!
((−1)u − 1) , if n �= 0,

1
pp!

(
π
2

)p−1
sin

(
pπ
2

)
, if n = 0.

(6)

III. FREQUENCY ANALYSIS OF THE PWM SIGNAL

The discrete-time Fourier transform (DTFT) Y (ejω) of yn
reveals the baseband content of the PWM signal and can be

computed using the Hammerstein model of the digital PWM

modulator in (3). Following the block diagram in Fig. 1 we

have that

Y (ejω) = Y1(e
jω) + Y3(e

jω) + Y5(e
jω) + · · · (7)

where Yp(e
jω) is the DTFT of the output yp,n of each branch

of the model. The DTFTs Yp(e
jω) are computed as

Yp(e
jω) = W ∗p(ejω)Hp(e

jω) (8)

20
Lo
g1
0�
H
p�
ej
Ω
��

0.0 0.2 0.4 0.6 0.8 1.0
�250

�200

�150

�100

�50

0

Normalized Frequency ��Π rad�sample�

Fig. 2. Magnitude of the frequency responses Hp(ejω) in dB for: p = 1
red, dashed; p = 3 green, thick; p = 5 blue; p = 7 black, dot-dashed.

where Hp(e
jω) is the DTFT of the impulse responses

given by (6), and W ∗p(ejω) is the DTFT of (wn)
p which

corresponds to the p-times periodic convolution (Modulation

or Windowing Theorem) [12] of W (ejω), the DTFT of wn.
Clearly W ∗1(ejω) = W (ejω) and the DTFT W ∗p(ejω)

can be computed recursively as

W ∗p(ejω)=
1

2π

∫ π

−π

W ∗(p−1)(ejθ)W ∗(ej(ω−θ))dθ (9)

for p = 2, 3, 4, 5, . . . . Therefore Y (ejω) is given by

Y (ejω) =W ∗1(ejω)H1(e
jω) +W ∗3(ejω)H3(e

jω)

+W ∗5(ejω)H5(e
jω) + · · · (10)

A. Frequency response of the filters Hp(e
jω)

The frequency responses of the filters can be computed

using its impulse responses as

Hp(e
jω) =

+∞∑
n=−∞

hp,ne
−jωn, (11)

whose closed-form expressions can be written as (see Ap-

pendix)

Hp(e
jω) = (j)p−1 ωp−1

p!(2)p−1
, −π < ω < π, (12)

giving H1(e
jω) = 1, H3(e

jω) = −ω2

24 , H5(e
jω) = ω4

1920 and

H7(e
jω) = − ω6

322560 for p = 1, 3, 5 and 7.
Due to the symmetry of the impulse responses the

frequency responses are real functions of ω. The filter

H1(e
jω) = 1 passes unaltered the input to the output. The

higher order filters are high-pass filters with zero DC gain

as shown by the magnitude responses in dB in Fig. 2.

B. Sinusoidal input

The model derived in the previous section is valid for

arbitrary signals, but meaningful results can be obtained

when the input xn is a sinusoid. Given

xn = A cos (2πf1nT ) = A cos (ω1n), (13)

with |A| < 1 and f1 < fs/2 or equivalently ω1 < π, its

DTFT can be written as

X(ejω) = πA
∑
r

[δ(ω − ω1 + 2πr) + δ(ω + ω1 + 2πr)] ,

(14)



where δ(ω) is the Dirac impulse function. The duty cycles

are

wn =
(1 + xn)

2
=

1

2
+

A

2
cos (ω1n) (15)

and its DTFT

W (ejω) =π
∑
r

[
A

2
δ(ω − ω1 + 2πr) +

A

2
δ(ω + ω1 + 2πr)

+δ(ω + 2πr)

]
. (16)

Using the binomial formula the powers of the duty cycles

can be computed as

(wn)
p =

(
1

2
+

A

2
cos (ω1n)

)p

=
1

2p

p∑
u=0

(
p

u

)
Au cosu(ω1n) (17)

where cosu(ω1n) can be expressed as the sum of its har-

monics components using the trigonometric power formulas

cos2u(ω1n)=
1

22u

(
2u

u

)
+

1

22u−1

u−1∑
k=0

(
2u

k

)
cos(2(u− k)ω1n),

cos2u+1(ω1n) =
1

4u

u∑
k=0

(
2u+ 1

k

)
cos((2u+ 1− 2k)ω1n).

(18)

Therefore, the p-th power of wn can be expressed as

(wn)
p = Ap,0 +

p∑
k=1

Ap,k cos(kω1n). (19)

The constants Ap,k are the amplitude of the k-th harmonic

component of (wn)
p.

The DTFT of (wn)
p is

W ∗p(ejω) = 2Ap,0π
∑
r

δ(ω + 2πr)+

+ π

p∑
k=1

Ap,k

∑
r

[δ(ω − ωk + 2πr) + δ(ω + ωk + 2πr)]

(20)

where ωk = kω1.

C. Frequency components that fall into baseband

Taking into account (10), the frequency components gen-

erated by the nonlinear behavior of the PWM modulator

can be analyzed from W ∗p(ejω) in (20). We are interested

in the frequency components of W ∗p(ejω) that fall in the

range 0 ≤ ω < π which represents the components of the

PWM signal lying in the range 0 ≤ f < fs/2.

The input frequency ω1 verifies that ω1 < π; higher

frequencies generated by the PWM ωk = kω1 (multiples

of ω1) will fall or not into baseband depending on the value

of ω1. Due to the 2π-periodicity of the DTFT all frequency

components ωk that do not fall into baseband will have a

2πr shifted replica noted ωbb
k that falls into baseband given

by

ωbb
k = π

∣∣∣((ωk

π
+ 1

))
2
− 1

∣∣∣ , (21)

where ((x))n is the modulo operator. Figure 3 shows the

mapping described by (21). This mapping of the higher
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Fig. 3. Mapping of the frequencies ωk = kω1 into the frequencies ωbb
k .

The dots indicate the mapping for ω1 = 0.9π.

TABLE I
EXAMPLE OF THE BASEBAND FREQUENCIES GENERATED BY W ∗p(ejω)

FOR ω1 = 0.04π, ω1 = 0.2π AND ω1 = 0.9π.

In freq. Baseband frequencies

W ∗p(ejω) ω1 ωbb
2 ωbb

3 ωbb
4 ωbb

5

0.04π − − − −
W ∗1(ejω) 0.2π − − − −

0.9π − − − −
0.04π 0.08π 0.12π − −

W ∗3(ejω) 0.2π 0.4π 0.6π − −
0.9π 0.2π 0.7π − −
0.04π 0.08π 0.12π 0.16π 0.24π

W ∗5(ejω) 0.2π 0.4π 0.6π 0.8π π
0.9π 0.2π 0.7π 0.4π 0.5π

frequency components into the baseband has been named

as the “aliasing distortion” of the PWM modulator [3], [9]–

[11].

Example of frequency mapping into baseband: For a

fifth-order model, an input of frequency ω1 produces the

frequency components ω2, ω3, ω4 and ω5 that map into the

frequencies ωbb
2 , ωbb

3 , ωbb
4 and ωbb

5 . Table I shows the map-

ping for three values of input frequency: low (ω1 = 0.04π),

medium (ω1 = 0.2π) and high (ω1 = 0.9π).

For ω1 = 0.04π and ω1 = 0.2π Table I shows that

ωbb
k = ωk = kω1. For the high frequency signal ω1 = 0.9π

the frequency components are located according to (21) as

indicated by the dots in Fig. 3, these components are known

as “aliasing distortion” of the PWM modulator.

D. Amplitudes of the components generated by each branch
and by the complete PWM output

The amplitudes Ap,k of the ωk frequency components of

(wn)
p decreases for growing values of k. Table II shows

the amplitude Ap,k of the frequency components gener-

ated by each of the W ∗i(ejω) branches considering upto

p = 5. For example, the linear branch only generates the

fundamental component with amplitude A1,1 = A/2 while

the cubic branch W ∗3(ejω) contributes to the fundamental

with amplitude A3,1 = (12A+ 3A3)/32 but also generates



TABLE II
GENERAL FORMULAS FOR THE AMPLITUDE OF THE FREQUENCY COMPONENTS GENERATED BY W∗p(ejω).

W ∗p(ejω) Ap,1 Ap,2 Ap,3 Ap,4 Ap,5

W ∗1(ejω) A
2 − − − −

W ∗3(ejω) (12A+3A3)
32

3A2

16
A3

32 − −

W ∗5(ejω) (80A+120A3+10A5)
512

(80A2+40A4)
512

(40A3+5A5)
512

5A4

256
A5

512

TABLE III
GENERAL FORMULAS FOR THE AMPLITUDE OF THE PWM

COMPONENTS.

Name Amplitude

A1
A(49152−384(4+A2)(ω1)

2+(8+12A2+A4)(ω1)
4)

98304

A2
A2(ωbb

2 )2(−192+(2+A2)(ωbb
2 )2)

24576

A3
A3(ωbb

3 )2(−256+(8+A2)(ωbb
3 )2)

196608

A4
A4(ωbb

4 )4

98304

A5
A5(ωbb

5 )4

983040

second and third harmonics with amplitudes A3,2 = 3A2/16
and A3,3 = A3/32 respectively. The branch filters (Fig. 1)

further attenuates the amplitudes of the harmonics.

The complete output yn representing the baseband content

of the PWM signal using the model of order 5 is

yn =
1

2
+A1 cos(ω1n) +A2 cos(ω

bb
2 n) +A3 cos(ω

bb
3 n)

+A4 cos(ω
bb
4 n) +A5 cos(ω

bb
5 n)

(22)

where Ak is the amplitude of the ωbb
k component in the

PWM signal. Each Ak has contributions from different

branches of the model weighted by the amplitude gain of

the filter Hp(e
jω) of each branch. Since for the PWM model

the frequency responses of the filters are real functions of

ω then

Ak = A1,kH1(e
jωbb

k ) +A3,kH3(e
jωbb

k ) +A5,kH5(e
jωbb

k ).
(23)

Table III shows the formulas for the computation of Ak

for any sinusoidal input of frequency ω1 and amplitude A.

E. Total Harmonic Distortion

Using the results in Table III the Total Harmonic Distor-

tion (THD) generated by the pulse width modulator can be

computed analytically. The THD is defined as

THD =

√
A2

2 +A2
3 +A2

4 +A2
5

A1

=

√
a2A2 + a4A4 + a6A6 + a8A8

b0 + b2A2 + b4A4
(24)

where A is the amplitude of the input sinusoidal; the

coefficients of the numerators are:

• a2 = 58982400(ωbb
2 )4 − 1228800(ωbb

2 )6 + 6400(ωbb
2 )8

• a4 = −614400(ωbb
2 )6+6400(ωbb

2 )8+1638400(ωbb
3 )4−

102400(ωbb
3 )6 + 1600(ωbb

3 )8

• a6 = 1600(ωbb
2 )8 − 12800(ωbb

3 )6 + 400(ωbb
3 )8 +

100(ωbb
4 )8

• a8 = 25(ωbb
3 )8 + (ωbb

5 )8

and the coefficients of the denominator:

• b0 = 491520− 15360(ω1)
2 + 80(ω1)

4

• b2 = −3840(ω1)
2 + 120(ω1)

4

• b4 = 10(ω1)
4.

Figure 4 shows the THD [%] as a function of the

frequency 0 ≤ ω < π obtained analytically with (24). The

THD [%] is shown for three values of amplitude A, also

know as the modulation depth or modulation index: A = 0.5
(red-thick), A = 0.75 (green-dashed) and A = 0.95 (blue-

dot-dashed). Distortion is higher when A grows but has an

irregular behavior as a function of frequency ω:

• For 0 ≤ ω < π/2 the THD [%] grows reaching

maximums of 7.45%, 11.1% and 13.88% for the three

values of A. In this region the THD [%] is dominated

by the harmonic frequencies generated by the digital

PWM modulator (mainly ωbb
2 = 2ω1).

• At ω = π/2 all baseband frequencies ωbb
k fall either at

π or at π/2 so that there is no distortion component in

0 ≤ ω < π: the THD [%] is zero at this point.

• For π/2 < ω < π distortion is generated by carrier

side-bands that fall into baseband (“PWM aliasing-

distortion”).

Simplified THD: For ω1 < π/2 the THD can be approx-

imated by

THD ≈ 1

16
A(ω1)

2 (25)

with an error of less than 1%. Equation (25) shows that

in this region the THD is proportional to the input ampli-

tude (modulation index) A and to the square of the input

frequency ω1.

Example of PWM used for a switched audio amplifier:
The input frequency ranges from 20 Hz to 20 kHz; if the

PWM frequency is fs = 80 kHz then the maximum value

for ω1 = 2π20000/80000 = π/2 and hence (25) revels that

the expected THD considering the distortion in frequency

range 0 to 40 kHz is less than 11.6% for A = 0.75. On the

other hand, if fs = 300 kHz, which is a typical value for

switched audio amplifiers, then the maximum value for ω1 =
2π20000/300000 = 2π/15 and (25) gives that the THD is

less than 0.82% considering the distortion components in

the frequency range 0 to 150 kHz.
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Fig. 4. Analytically computed curves for THD [%] as a function of
0 < ω/π < 1 for A = 0.5 (red-thick), A = 0.75 (green-dashed) and
A = 0.95 (blue-dot-dashed). The dots, squares and diamonds indicates the
results of a numerical simulation.

IV. SIMULATIONS

To verify the results for the THD [%] obtained by equa-

tion (24) a numerical simulation of the PWM modulator was

performed. The actual two-level q(t) signal is generated, low

pass filtered to avoid aliasing and sampled to compute the

FFT. The simulation time for each frequency and amplitude

is long, since the PWM signal should have enough time-

resolution to achieve quantization noise below −100 dB,

and also because several periods of the input signal must

be simulated to obtain a spectrum with good frequency

resolution. Using the FFT, a frequency band around the

fundamental frequency is selected as the input and all the

remaining spectra in the range 0 ≤ ω < π is considered as

distortion. This procedure is equivalent to the computation

of total harmonic distortion plus noise (THD+N) typically

performed by spectral analyzers. Since it is expected that

noise is several orders of magnitude lower than the harmonic

components, the THD+N is similar to THD in our case.

A very good match between the analytical results (curves)

and the simulations results (dots) of the THD are shown in

Fig. 4 for three amplitude values.

Figures 5 to 8 show the spectra obtained with the numer-

ical simulations (curves) and computed with the analytical

expressions (dots) in Table III for A = 0.75.

• For ω1 = π/25 and ω1 = 0.2π the spectra in Fig. 5

and Fig. 6 shows that spurious components appear at

multiples of the input frequencies (harmonics).

• For ω1 = π/2 no distortion components appear in

baseband (ω < π). This can be observed in Fig. 7 and

corresponds to the zero THD point in Fig. 4.

• For frequencies greater than π/2 distortion components

appear as aliasing distortion. For ω1 = 0.9π the spectra

is shown in Fig. 8.

In all cases the analytic results using upto the power p =
5 (summarized in Table III) perfectly match the numerical

simulations of the real PWM modulator.

V. CONCLUSIONS

A model for digital PWM composed of odd powers and

digital filters was reviewed. Closed-form formulas for the

impulse and frequency responses of the filters of any order
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Fig. 5. Spectra obtained with the analytical model (squares) and with the
numerical simulation (solid line). ω1 = π/25, A = 0.75.
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Fig. 6. Spectra obtained with the analytical model (squares) and with the
numerical simulation (solid line). ω1 = π/5, A = 0.75.
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Fig. 7. Spectra obtained with the analytical model (squares) and with the
numerical simulation (solid line). ω1 = π/2, A = 0.75.
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Fig. 8. Spectra obtained with the analytical model (squares) and with the
numerical simulation (solid line). ω1 = 0.9π, A = 0.75.

p were presented. The model allowed to perform a frequency

analysis of the PWM modulator that was useful to identify

the frequencies and amplitudes that appear in the baseband.

These components were used to compute the THD which,

under typical practical conditions, is proportional to the

modulation index and to the square of the input frequency.

Simulations showed that a 5-th order model is enough

to capture the baseband behavior of the modulator. The

proposed model can also be used to speed up simulations

of a PWM modulator.

APPENDIX

FREQUENCY RESPONSES OF THE FILTERS

We show that the expression for Hp(e
jω) in (12) corre-

spond to the impulsive response hp,n. The definition of the

inverse DTFT transform states that

hp,n =
1

2π

∫ π

−π

Hp(e
jω)ejωndω

=
(j)p−1

2πp!(2)p−1

∫ π

−π

ωp−1ejωndω. (26)

To solve the integral in (26) the cases n �= 0 and n = 0 are

analyzed separately. For n = 0 the result is

hp,0 =
1

pp!

(π
2

)p−1

sin
(pπ

2

)
. (27)

The primitive function of the integral for n �= 0 is

F (ω) =

∫
ωp−1ejωndω = ejnω

p−1∑
u=0

(p− 1)!(−1)p−1−u

u!(jn)p−u
ωu.

(28)

The impulse responses for n �= 0 can be found by using the

primitive

hp,n =
(j)p−1

2πp!(2)p−1
(F (π)− F (−π))

=
j(−1)n+p

pπ2pnp

p−1∑
u=0

(jπn)u

u!
((−1)u − 1) . (29)

This gives the general expression for the computation of the

impulse responses shown in (6).
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