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Abstract—The aim of this paper is to show the design of a 

combined controller, using Backstepping and sliding mode 

control concepts, for controlling the trajectory following of a 

quadcopter. The Backstepping-sliding mode controller is 

compared against a Backstepping- PID controller for circular 

trajectory. The results by simulations demonstrated the 

advantages of the proposed approach. The ISE performance 

index is used to measure the performance and robustness of 

both controllers.  

 
 

Resumen—  El objetivo de este proyecto es mostrar el diseño 

de un control combinado utilizando los conceptos de 

Backstepping y Control de Modos Deslizantes para el control de 

seguimiento de trayectoria de un cuadricóptero. El controlador 

Backstepping-Modos Deslizantes es comparado con un 

controlador Backstepping-PID en una trayectoria circular. Los 

resultados de las simulaciones demuestran las ventajas del 

enfoque propuesto. El índice de rendimiento ISE se utiliza para 

medir el desempeño y la robustez de los dos controladores. 

I. INTRODUCTION 

A quadcopter is an UAV (Unmanned Aerial Vehicle), 

used in many fields such as ground exploration, data 

collection and monitoring in areas as diverse as military, 

research, agriculture, maintenance and security among many 

more [1].   
In order of making those tasks in the best possible way, it 

is important the development of control mechanisms that 

seek to ensure the smooth implementation of trajectories 

planned by the operators. 

Due to the complexity of the dynamical system that 

governs the behaviour of a quadcopter, most of the controller 

approaches are not able to stabilize properly the position or 

follow the desired trajectory ([2], [3]) 

Some works related with this topic have been presented. 

Arellano-Muro, Carlos Vega, Luis Castillo,B. and Loukianov, 

Alexander [4], proposed a Backstepping control to solve the 

trajectory tracking problem and ensures robustness against 

external forces and parameters variations. 

Kacimi, Mokhtari and Kouadri [5], presented in their 

paper a sliding mode controller to guarantee Lyapunov 

stability and synthesize tracking errors. It takes into account 

nonlinearities. 

Ramirez, Parra, Sánchez, and Garcia [6], developed a new 

control technique for handling the aerodynamic forces. The 

controller is composed by a Backstepping that is used to 

stabilize the system and also by a sliding mode which 

compensates the disturbances. 

Bouabdallah and Siegwart [7], proposed two nonlinear 

control techniques and applied them to an autonomous micro 

helicopter called Quadrotor. A backstepping and a sliding-

mode techniques. They performed various simulations in 

open and closed loop and also implemented several 

experiments on the test-bench to validate the control laws. 

In this work, it is presented a control scheme that combines 

two controller’s approaches. The combined controller 

approach is composed by two components. The first part is a 

Backstepping controller, its objective is to create a virtual 

control law which permits to calculate the new references for 

controlling roll and pitch angles. Secondly, a sliding mode 

controller is used, it executes control over the rotor and thus 

allows stabilization of the position and the appropriate 

monitoring of the planned trajectory to follow. The 

references for the sliding mode controller are provided by the 

Backstepping control. Then, the proposed algorithm is 

compared against a Backstepping-PID controller by 

simulations. 

The combination of both schemes should produce a 

controller approach to strengthen and to improve the 

performance and robustness of both controllers. The system’s 

performance is tested and ISE performance index used to 

measure it. 

This article is organized as follows. Section 2 presents the 

dynamic model of the quadcopter. Section 3 explains the 

basic concepts about sliding mode and Backstepping 

controllers. Section 4 shows the design of the controllers. 

Section 5 presents the results of the simulations tests using 

the designed controllers. Finally, section 6 presents the 

conclusions of this work. 

 

II. DYNAMIC MODEL OF A QUADCOPTER 

The quadcopter can be seen as a multivariable system 

having six degrees of freedom which correspond to three 

translational (x, y, 𝑧) and three rotational (∅, 𝜃, 𝜓). 
The quadcopter has four arms forming a cross, located at 

each end there are four actuators each one form by a motor 

and a propeller (two rotate clockwise and two in the opposite 

direction). The quadcopter has three types of motion:  roll (∅), 

pitch (𝜃) and yaw (𝜓). Quadcopter position is controlled by 

changing the speed at which the rotors rotate. 



The general sketch of a quadcopter is shown in Fig. 1. 

 

Fig. 1. Basic structure of a Quadcopter. 

The generalized coordinates of the model can be written 

as:  

ℎ = [𝑥 𝑦 𝑧 ∅  𝜃 𝜓]                          (1) 

 

Where (𝑥, 𝑦, 𝑧)  are the linear positions and  (∅, 𝜃, 𝜓) 

are the roll, pitch and yaw angles respectively. Now, it is 

presented the mathematical model of the quadcopter used for 

this analysis: 

 𝑥̈ =
(cos 𝜓 sin 𝜃 cos 𝜙+sin 𝜓 sin 𝜙)

𝑚
𝑈1  (2) 

 

 𝑦̈ =
(sin 𝜓 sin 𝜃 cos 𝜙−sin 𝜙 cos 𝜓)

𝑚
𝑈1              (3) 

 

            𝑧̈ = −𝑔 +
(cos 𝜙 cos 𝜃)

𝑚
𝑈1         (4) 

 

         𝜙̈ = 𝜓̇𝜃̇ (
𝐼𝑦−𝐼𝑧

𝐼𝑥
) +

𝑈2

𝐼𝑥
+ 𝜓̇𝜃̇ −

𝐽𝑟𝜃̇Ω𝑟

𝐼𝑥
              (5) 

 

       𝜃̈ = 𝜓̇𝜙̇ (
𝐼𝑧−𝐼𝑥

𝐼𝑦
) +

𝑈3

𝐼𝑦
− 𝜓̇𝜙̇ +

𝐽𝑟𝜙̇Ω𝑟

𝐼𝑦
         (6) 

 

𝜓̈ = 𝜃̇𝜙̇ (
𝐼𝑥−𝐼𝑦

𝐼𝑧
) +

𝑈4

𝐼𝑧
+ 𝜃̇𝜙̇        (7) 

 

Where, the mass of the quadrotor is represented by 𝑚, 𝑔 

is the gravity, Ωr  is the angular speed of all propeller, 𝐽𝑟 is 

the inertia of the rotor and 𝐼𝑥, 𝐼𝑦  and 𝐼𝑧 are the inertia of the 

quadrotor in x, y  and 𝑧 respectively.  

 

The actuators equations are presented in (8), (9), (10) y 

(11). The input signal 𝑈1 is the total drag of the rotors. 𝑈2, 

𝑈3  and 𝑈4  are the moments for pitch, roll and yaw 

respectively. 

                  𝑈1= 𝑏(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2)                (8) 

         

𝑈2 = 𝑏 𝑙 (−Ω2
2 + Ω4

2)                         (9) 

 

                𝑈3 = 𝑏 𝑙 (−Ω1
2 + Ω3

2)        (10) 

 

 𝑈4 = 𝑑(−Ω1
2 + Ω2

2 − Ω3
2 + Ω4

2)      (11) 

Where Ω1, Ω2, Ω3, Ω4the angular speed for the rotors are, 

𝑏  is the drag factor, 𝑑  is the drag and 𝑙  is the distance 

between the mass center and the rotor. 

III. CONTROLLERS BASIC CONCEPTS  

In this section, a briefly description of both controllers are 

presented.  

A. Backstepping Control 

Backstepping is a recursive Lyapunov-based scheme 

proposed in the beginning of 1990s [4]. 

The idea of this approach is to synthesize a controller 

recursively by considering some of the state variables as 

“virtual control” and designing for them intermediate control 

laws. The control law is synthesized to force the system to 

follow the desired trajectory [8].  

B. Sliding Mode Control 

 

Sliding Mode Control (SMC) is a robust control approach 

for nonlinear systems [9]. It faces uncertainty and 

nonlinearities with a better performance and robustness than 

classic controllers.  

The sliding mode control design aims to make the system 

states converge to a sliding surface and then keep on it. The 

sliding surface 𝑠(𝑡) represents the desired dynamics of the 

system, which is defined [10] by: 

 

     𝑠(𝑡) = 𝑒̇ + 𝜆𝑒               (12) 

 

Where 𝜆  represents a tuning parameter. The control 

objective is to ensure that the controlled variable is equal to 

the reference value, so, the error and its derivatives are zero. 

The problem of tracking a reference value can be reduced to  

that of keeping s(t) at zero. Once, s(t) is reached, it is desired 

to make:  

 

       
𝑑𝑠(𝑡)

𝑑𝑡
= 0                  (13) 

 

Once the sliding surface has been selected, attention must 

be turned to design the control law that satisfies s(t)=0. The 

control law, U(t), consists of two additive parts; a continuous 

part, 𝑢𝑒𝑞(𝑡), and a discontinuous part, 𝑢𝑐𝑟(𝑡). Therefore, the 

control law is given by:  

 

    𝑢(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑐𝑟(𝑡)           (14) 

 

Where 𝑢𝑒𝑞(𝑡)  is the continuous part of the controller 

responsible for maintaining the controlled variable on the 

sliding surface and 𝑢𝑐𝑟(𝑡) is the discontinuous part of the 

controller which is responsible for the state converges to the 

sliding surface, and it must satisfy the following inequality 

[11,12]: 

 

                                𝑠𝑠̇ < 0                          (15) 

 

The above relation means that the time derivatives of error 

states vector always point to the sliding surface, when the 

system is in reaching mode, hence the dynamics of the system 

will approximate the dynamic surface in a finite time.  

 𝑢𝑒𝑞(𝑡) is given by:  

 

            𝑢𝑒𝑞(𝑡)  = 𝑓(𝑅(𝑡), 𝑋(𝑡))             (16)  
 



Where 𝑅(𝑡) is the reference signal and 𝑋(𝑡) is the model 

output, 𝑢𝑒𝑞(𝑡) will be determined later using the equivalent 

control procedure [9] . 𝑢𝑐𝑟(𝑡) has a non-linear element that 

includes the switching element of the control’s law [9, 10] 

 

   𝑢𝑐𝑟(𝑡) = 𝐾𝐷𝑠𝑖𝑔𝑛(𝑠(𝑡))        (17) 

 

To smooth the discontinuity, a sigmoid function is used 

[11]:  

 

          𝑢𝑐𝑟(𝑡) = 𝐾𝐷
𝑠(𝑡)

|𝑠(𝑡)|+𝛿
              (18) 

 

Where 𝐾𝐷 is a tuning parameter responsible for the speed 

adjustment, and δ is a parameter responsible for reducing 

high frequency oscillations around the desired equilibrium 

point, these undesirable oscillations are known as chattering 

[9, 11, 12]. 

IV. CONTROLLERS 

The quadcopter has six degrees of freedom, with input 

signals which are responsible for making it moves forward, 

backward, right and left, up or down. To control the system, 

four equations to be connected to 𝑈1, 𝑈2, 𝑈3 and 𝑈4  were 

designed.𝑈1 defines the altitude reference and 𝑈2, 𝑈3 and 𝑈4 

define quadcopter roll, pitch and yaw references. 

 

The next part presents the development of both controllers. 

Firstly, the Backstepping is shown and secondly, the sliding 

mode is treated. 

A. Backstepping Control Translation System 

 

Considering 𝑢𝑥 = cos 𝜓 sin 𝜃 cos 𝜙 + sin 𝜓 sin 𝜙   and 

𝑢𝑦 = sin 𝜓 sin 𝜃 cos 𝜙 − sin 𝜙 cos 𝜓  and replacing them 

into Eq. (2) and Eq. (3), [7]: 

 

    𝑥̈ =
𝑈1 

𝑚
𝑢𝑥     (19) 

 

    𝑦̈ =
 𝑈1

𝑚
𝑢𝑦    (20) 

 

1)  Position X 

The Backstepping control procedure to design the 

controllers for translation system is presented in [4].  

 

Position error 𝑋 is given by: 

 

        𝑒𝑥 = 𝑥𝑟𝑒𝑓 − 𝑥              (21) 

Differentiating the previous equation: 

         

  𝑒̇𝑥 = 𝑥̇𝑟𝑒𝑓 − 𝑥̇                            (22) 

 

The goal is to design a virtual control 𝑥∗ which makes 

 𝑙𝑖𝑚
𝑡 →∞

𝑒𝑥 → 0, considering the Lyapunov function 𝑉𝑥: 

 

       𝑉𝑥 =
1

2
𝑒𝑥

2 > 0          (23) 

 

And the derivate of this function is: 

 

         𝑉̇𝑥 =  𝑒𝑥𝑒̇𝑥 = 𝑒𝑥(𝑥̇𝑟𝑒𝑓 − 𝑥̇)         (24) 

 

Introducing the virtual control: 

 

                 𝑥∗ = 𝑥̇𝑟𝑒𝑓 + 𝑞𝑒𝑥      (25) 

 

Where 𝑞  is a positive constant value. Defining a new 

variable: 

          𝑒𝑥1 = 𝑥∗ − 𝑥̇ = 𝑥̇𝑟𝑒𝑓 + 𝑞𝑒𝑥 − 𝑥̇      (26) 

 

Rearranging Eq. (26), it is obtained: 

 

   𝑥̇𝑟𝑒𝑓 = 𝑒𝑥1 − 𝑞 𝑒𝑥 + 𝑥̇        (27) 

 

By replacing Eq. (27) into Eq. (24) the following result is 

obtained: 

     𝑉̇𝑥 = 𝑒𝑥(𝑒𝑥1 − 𝑞 𝑒𝑥 + 𝑥̇ − 𝑥̇) = −𝑞𝑒𝑥
2 + 𝑒𝑥𝑒𝑥1 

       (28) 

The derivative of Eq. (26) is: 

 

    𝑒̇𝑥1 = 𝑥̈𝑟𝑒𝑓 + 𝑞𝑒̇𝑥 − 𝑥̈        (29) 

 

Replacing Eq. (19) in Eq. (29), it is obtained: 

 

   𝑒̇𝑥1 = 𝑥̈𝑟𝑒𝑓 + 𝑞𝑒̇𝑥 −
𝑈1

𝑚
𝑢𝑥       (30) 

 

In order to get lim
𝑡 →∞

𝑒𝑥1 → 0 , it is necessary to choose a 

𝑉𝑥𝑥  Lyapunov control function: 

      𝑉𝑥𝑥 = 𝑉𝑥 +
1

2
𝑒𝑥1

2 > 0        (31) 

 

Obtaining the derivate we have: 

 

       𝑉̇𝑥𝑥 = 𝑉̇𝑥 + 𝑒𝑥1𝑒̇𝑥1        (32) 

  

Replacing equation Eq. (29) in Eq. (32), it is obtained: 

 

        𝑉̇𝑥𝑥 = 𝑉̇𝑥 + 𝑒𝑥1 (𝑥̈𝑟𝑒𝑓 + 𝑞𝑒̇𝑥 −
𝑈1

𝑚
𝑢𝑥)         (33)

  

Substituting Eq. (28) in Eq. (33): 

 

   𝑉̇𝑥𝑥 = −𝑞𝑒𝑥
2 + 𝑒𝑥𝑒𝑥1 + 𝑒𝑥1 (𝑥̈𝑟𝑒𝑓 + 𝑞𝑒̇𝑥 −

𝑈1

𝑚
𝑢𝑥) (34) 

It is proposed that:   

 

        𝑢𝑥
∗ =

𝑚

𝑈1
[𝑥̈𝑟𝑒𝑓 + 𝑞𝑒̇𝑥 + 𝑒𝑥 + 𝑝𝑒𝑥1]             (35) 

Assuming now perfect velocity tracking 𝑢𝑥 ≅ 𝑢𝑥
∗, and 

replacing Eq. (35) in Eq. (34): 

 

                     𝑉̇𝑥𝑥 = −𝑞𝑒𝑥
2 − 𝑝𝑒𝑥1

2 < 0             (36) 

 

where 𝑒𝑥 → 0 and 𝑒𝑥1 → 0 with 𝑡 → ∞ 

 

Finally, the x control law is: 

 

𝑢𝑥
∗ =

𝑚

𝑈1
[𝑥̈𝑟𝑒𝑓 + 𝑞𝑒𝑥̇ + 𝑒𝑥 + 𝑝(𝑥̇𝑟𝑒𝑓 + 𝑞𝑒𝑥 − 𝑥̇)]  (37) 

 

 

 



 Desired pitch angle   

Where the desired pitch angle is 𝜃𝑟𝑒𝑓 .  From Eq. (2), 𝜃𝑟𝑒𝑓 . 

is obtained: 

    𝜃𝑟𝑒𝑓 = 𝑠𝑖𝑛−1 (

𝑥̈𝑚

𝑈1
−𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙

𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙
)                   (38) 

 

Replacing in Eq. (19) in Eq. (38) and considering 𝑢𝑥 ≅
𝑢𝑥

∗:  

 

        𝜃𝑟𝑒𝑓 = 𝑠𝑖𝑛−1 (
𝑢𝑥

∗−𝑠𝑖𝑛𝜓𝑠𝑒𝑛𝜙

𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙
)         (39) 

2)  Position Y 

 

Following the same procedure for the X control, is 

obtained: 

 

𝑢𝑦
∗ =

𝑚

𝑈1
[𝑦̈𝑟𝑒𝑓 + 𝑞𝑒̇𝑦 + 𝑒𝑦 + 𝑝(𝑦̇𝑟𝑒𝑓 + 𝑞𝑒𝑦 − 𝑦̇)]  (40) 

 Desired roll angle   

Where the desired roll angle is 𝜙𝑟𝑒𝑓 .  Substituting Eq. (2) 

into Eq. (3), 𝜙𝑟𝑒𝑓  is obtained:  

 

    𝜙𝑟𝑒𝑓 = 𝑠𝑖𝑛−1 ( 𝑠𝑖𝑛𝜓
𝑥̈𝑚

𝑈1
− 𝑐𝑜𝑠𝜓

𝑦̈𝑚

𝑈1
)       (41) 

 

Replacing Eq. (19) and Eq. (20), it is obtained: 

 

   𝜙𝑟𝑒𝑓 = 𝑠𝑖𝑛−1( 𝑠𝑖𝑛𝜓 𝑢𝑥
∗ − 𝑐𝑜𝑠𝜓 𝑢𝑦

∗)       (42) 

B. Sliding Mode Control (SMC) for Altitude and Rotational 

Systems 

1)   Altitude Control law  

The sliding surface is defined in Eq. (12) and Eq. (15). The 

error is defined by the difference between the desired altitude 

and the quadcopter altitude: 

 

           𝑒𝑧 = 𝑧𝑟𝑒𝑓 − 𝑧        (43) 

 

Differentiating the previous equation: 

 

           𝑒̇𝑧 = 𝑧̇𝑟𝑒𝑓 − 𝑧̇        (44) 

 

And substituting Eq. (43) and Eq. (44) in Eq. (12): 

 

            𝑠 = (𝑧̇𝑟𝑒𝑓 − 𝑧̇) + 𝜆(𝑧𝑟𝑒𝑓 − 𝑧)       (45)  

 

The derivative of the previous equations, is given by: 

 

𝑠̇ = (𝑧̈𝑟𝑒𝑓 − 𝑧̈) +  𝜆(𝑧̇𝑟𝑒𝑓 − 𝑧̇)          (46) 

 

Using Eq. (4) and replacing in Eq. (46): 

 

  𝑠̇ = (𝑧̈𝑟𝑒𝑓 + 𝑔 −
cos 𝜙 cos 𝜃

𝑚
𝑈1) +  𝜆(𝑧̇𝑟𝑒𝑓 − 𝑧̇)     (47) 

 

Assuming now perfect velocity tracking 𝑢(𝑡) ≅ 𝑈1, and 

using Eq. (14), and replacing  𝑢(𝑡) in 𝑈1: 

 

𝑠̇ = (𝑧̈𝑟𝑒𝑓 + 𝑔 −
cos 𝜙 cos 𝜃

𝑚
(𝑢𝑒𝑞 + 𝑢𝑐𝑟)) +  𝜆(𝑧̇𝑟𝑒𝑓 − 𝑧̇) (48)

  

To find 𝑢𝑒𝑞 , it is assumed 𝑢𝑐𝑟 = 0  and  𝑠̇ = 0, then: 

 

𝑢𝑒𝑞 =
𝑚

cos 𝜙 cos 𝜃
[𝑧̈𝑟𝑒𝑓 + 𝑔 + 𝜆(𝑧̇𝑟𝑒𝑓 − 𝑧̇) ]        (49) 

 

To find 𝑢𝑐𝑟, a Lyapunov candidate function is defined by: 

 

           𝑉 =
1

2
𝑠2 > 0              (50) 

And its derivate is: 

            𝑉̇ = 𝑠𝑠̇ < 0                 (51) 

 

Replacing Eq. (48) into Eq. (51) 
 

𝑉̇ = 𝑠 ((𝑧̈𝑟𝑒𝑓 + 𝑔 −
cos 𝜙 cos 𝜃

𝑚
(𝑢𝑒𝑞 + 𝑢𝑐𝑟)) +  𝜆(𝑧̇𝑟𝑒𝑓 −

𝑧̇)) < 0     (52) 

Substituting Eq. (49) in Eq. (52) 

 

𝑉̇ = 𝑠 (−
cos 𝜙 cos 𝜃

𝑚
𝑢𝑐𝑟) = −𝑘𝑐𝑟  𝑠 𝑢𝑐𝑟 < 0        (53)  

 

Where 𝑘𝑐𝑟 =
cos 𝜙 cos 𝜃

𝑚
 ,  the 𝜙 and 𝜃 angles are limited to 

−
𝜋

2
< 𝜙 <

𝜋

2
  and −

𝜋

2
< 𝜃 <

𝜋

2
 [13], with this ensures 𝑘𝑐𝑟 >

0.  

 

Rearranging Eq. (53) and for that 𝑉̇ < 0, 𝑢𝑐𝑟 is defined 

as:  

            𝑢𝑐𝑟 = 𝑘𝑐𝑟  𝑘𝑑𝑟𝑠𝑖𝑔𝑛(𝑠) ; 𝑘𝑑𝑟 > 0      (54) 

 

To facilitate implementation, it is considered 𝐾𝐷 =
𝑘𝑐𝑟𝑘𝑑𝑟 > 0. 

Adding Eq. (49) and Eq. (54), and 𝑢(𝑡) ≅  𝑈1 becomes: 

 

𝑈1 =
𝑚

cos 𝜙 cos 𝜃
[ 𝑔 + 𝑧̈𝑟𝑒𝑓 + 𝜆(𝑧̇𝑟𝑒𝑓 − 𝑧̇)] + 𝐾𝐷𝑠𝑖𝑔𝑛(𝑠) (55) 

 

Finally, the altitude control law is: 

 

𝑈1 =
𝑚

cos 𝜙 cos 𝜃
[ 𝑔 + 𝑧̈𝑟𝑒𝑓 +  𝜆(𝑧̇𝑟𝑒𝑓 − 𝑧̇)] +  𝐾𝐷

𝑠(𝑡)

|𝑠(𝑡)|+𝛿
 (56) 

 

2)  Rotational Control law 

Following the same procedure for the altitude control, is 

obtained the controllers for roll, pitch and yaw: 

 

𝑈2 = 𝐼𝑥 [𝜙̈𝑟𝑒𝑓 − 𝜓̇𝜃̇ (
𝐼𝑦−𝐼𝑧

𝐼𝑥
) − 𝜓̇𝜃̇ +

𝐽𝑟𝜃̇Ω𝑟

𝐼𝑥
+  𝜆(𝜙̇𝑟𝑒𝑓 −

𝜙̇) ] + 𝐾𝐷
𝑠(𝑡)

|𝑠(𝑡)|+𝛿
         (57) 

  

𝑈3 = 𝐼𝑦 [𝜃̈𝑟𝑒𝑓 − 𝜓̇𝜙̇ (
𝐼𝑧−𝐼𝑥

𝐼𝑦
) + 𝜓̇𝜙̇ −

𝐽𝑟𝜙̇Ω𝑟

𝐼𝑦
+  𝜆(𝜃̇𝑟𝑒𝑓 −

𝜃̇) ] + 𝐾𝐷
𝑠(𝑡)

|𝑠(𝑡)|+𝛿
         (58) 

 



𝑈4 = 𝐼𝑧 [𝜓̈𝑟𝑒𝑓 − 𝜃̇𝜙̇ (
𝐼𝑥−𝐼𝑦

𝐼𝑧
) − 𝜃̇𝜙̇ +  𝜆(𝜓𝑑̇ − 𝜓̇)] +

𝐾𝐷
𝑠(𝑡)

|𝑠(𝑡)|+𝛿
         (59) 

 

V. SIMULATION RESULTS 

In this section, the servo and regulation tasks for the 

quadrotor, for the circular trajectory, are presented, the 

quadcopter parameters are presented by [14]. The controllers 

were calibrated manually by trial and error. The tuning 

parameters for the SMC with Backstepping and the PID 

tuning parameters [15] with Backstepping controllers [4] are 

shown in the Table I and Table II: 

TABLE I 
SMC AND PID TUNING PARAMETERS 

  SMC   PID  

Parameter 𝝀 𝜹 𝒌𝑫 𝒌𝒑 𝒌𝒅 𝒌𝒊 

𝑧 7 0.25 50 65 10 14 

𝜙 3 0.5 3.5 85 10 5 

𝜃 3 0.5 3.5 85 10 5 

𝜓 5 0.2 5 65 10 10 

TABLE II 

BACKSTEPPING CONTROL TUNING PARAMETERS FOR SMC 

AND PID 

 SMC  PID 

Parameter 𝒑 𝒒 𝒑 𝒒 

𝑥 2 10 5 2 

𝑦 2 10 5 2 

 
A.  Comparison SMC vs PID 

 

In order to evaluate the performance of the SMC controller, 

it is compared against a PID controller. 

Fig. 2 depicts the results for both controllers for a circular 

trajectory. ISE [15, 16] is used to measure the performance 

of both controllers.  In Table III are shown the ISE and 

∆% for circular trajectory 

∆% is defined as follows: 

 

∆% = |
ISE1−ISE2

(
ISE1+ISE2

2
)
| ∗ 100                      (60) 

 

 

Fig. 2. Circular Trajectory without disturbances. 

TABLE III 
ISE FOR CIRCULAR TRAJECTORY 

Parameter 

(ISE) 
 𝐒𝐌𝐂 𝐏𝐈𝐃 ∆% 

𝑥 0,63 0,84 29,15 

𝑦 0,69 0,86 22,30 

𝑧 0,30 0,34 13,08 

 

 

The results for a circular trajectory with disturbances are 

shown in Fig. 3 

 

Fig. 3. Circular Trajectory with external perturbations. 

B. Robustness Test 

 

    In this part robustness tests are presented. Some changes 

in mass are considered 

Fig. 4 and Fig. 5 show robustness charts. They are 

presented as 3D figures where the axes are ISE index, mass 

changes and time. The results showed that the Backstepping-

PID controller works properly until a 53.84% of additional 

nominal mass (0.52 Kg), while the Backstepping-SMC works 

properly with a 71.15% above of nominal mass (0.52 Kg), 

showing a be more robust. 

 

 

Fig. 4. Robustness chart for Backstepping- PID. 



 

Fig. 5.  Robustness chart for Backstepping- SMC. 

VI. . CONCLUSIONS 

A Backstepping-Sliding mode control approach was used 

in this paper to monitor and adjust the height and angle for a  

quadcopter for positions (x and y).  

The results obtained by comparing Backstepping-PID and 

Backstepping-SMC, have shown that the second control 

approach presented better performance and also more 

robustness. 

The adjustment parameters of the various controllers were 

performed by trial and error; it is recommended to develop 

tuning equations in order to improve the operation of the 

controllers. 
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