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Abstract— Augmented Reality is viewing the real world
combined with virtual computer-generated elements, whose
fusion leads to a mixed reality. It is important that these elements
are aligned within the scene in a precise manner according to the
type of application. Achieving this may require the identification
of the orientation of a marker augmented reality or estimation
of the perspective of the real scenario.

This paper presents a markerless system appropriate for
camera pose estimation in augmented reality applications. We
propose a selection and detection of hand feature points to
estimate their pose in the real world with the aim of rendering
3D virtual content aligned with the hand. Also, we expose a
method for interacting with the application through movements
of two fingers, particularly putting them together. This action
exchanges the virtual content displayed, chosen from a set of 3D
objects available in the system. To sum up, users can manipulate
the virtual contents by using their hands.

Resumen— La Realidad Aumentada es la visualización
del mundo real combinado con elementos virtuales generados
por computadora, cuya fusión da lugar a una realidad mixta.
Es importante que estos elementos virtuales sean alineados
dentro de la escena de una manera precisa de acuerdo al tipo
de aplicación. Lograrlo puede requerir identificar la orientación
de un marcador de realidad aumentada o estimar la perspectiva
del escenario real.

Este trabajo presenta un sistema de realidad aumentada que
realiza la estimación de la pose de la cámara. Se propone una
selección y detección de ciertas caracterı́sticas de la mano para
estimar su postura en el mundo real con la finalidad de graficar
contenido virtual 3D alineado con las manos. Además, se expone
un método que permite al usuario interactuar con el sistema a
través del movimiento de dos dedos, particulamente juntando
los mismos. En este trabajo, esta acción realiza el intercambio
del contenido virtual visualizado, elegidos desde un conjunto de
objetos 3D disponibles en el sistema. En resumen, los usuarios
pueden manipular el contenido virtual con sus manos.

Keywords— Augmented reality; Hand pose estimation; 3D
virtual contents

I. INTRODUCTION

Augmented Reality refers to a realistic integration of virtual
elements into the sequence of images in real time. One of
the aims of augmented reality is to improve understanding
of real world providing additional information that could be
used for example in marketing, education or entertainment.
This augmentation of real scene requires image processing to

solve position and orientation of a real element which must be
aligned with the virtual element to achieve the augmentation
of the reality. There are two main kinds of methods for
augmented reality: markers based method and method without
markers.

The method based on markers needs artificial elements into
real scene to help the visual tracking and pose estimation.
Those artificial elements (called fiducial markers) are easy
to detect and contain codes to distinguish from one another.
An open source library called ArUco [1] was used for a
development of our own based on fiducial markers (briefly
explained in Section II).

The method without markers uses natural features existing
on real scene, such as corners, edges, line segments of real
objects and, why not, user’s body parts as well. In this paper
we propose a method without markers based on hand pose
that allows to recognize its orientation in 3D space to align
virtual content on the palm of the hand. Furthermore, our
method recognizes simple finger poses to interact with this
virtual content.

II. RELATED WORKS

A fiducial marker system uses the markers based method
and it is composed by a set of valid markers and an algorithm
which performs its detection. Several fiducial markers have
been proposed, one of them is ArUco. It is a library for
Augmented Reality applications based on OpenCV [2] for
tracking known square physical markers as shown in Figure
1. ArUco operates by tracking the user’s viewpoint in the
real world from each frame of a video sequence and uses
it to draw virtual object on the marker. The processed
frame is then rendered back on the display as a background
while augmenting the virtual object at the exact location of
the marker to produce a seamless see-through effect video
sequence. We have implemented ArUco in our augmented
reality application (its source code is available online [3]).

Regarding the methods without markers, the technique
presented in [4] tracks the position of hands to insert virtual
content over the hand into de real scene. First, the hand is
identified and isolated in the video through two techniques:
Technique of detection of the skin (using YCbCr color
space) to remove the sections without color of skin, and



Figure 1. Examples of square fiducial markers

neural network to determine areas that correspond to a hand.
The work in [5] proposes a pose hand estimation algorithm
based on feature points which must be both coplanar and
non-collinear for correct planar pose estimation. The position
of fingertips and finger valleys are detected using the contour
of the hand. In [6], authors proposed an augmented reality
system based on the user’s hand that can track the outstretched
hand. And the fingertips are also detected using an algorithm
based on the contour of the hand. The contour point with a
high curvature value is sought as a candidate fingertip point.

Based on these observations, we may note that good
results are obtained through the following methods: hand
segmentation using skin color detection, hand features points
detection using shape analysis and pose estimation through
perspective projection transformation. We propose combine
these methods to estimate the hand pose in 3D space. First,
the hand is isolated using skin color detection, on condition
that the background has uniform color. The following step is
to identify fingertips and finger valleys through hand shape
analysis, and then obtain hand features points that must be
coplanar and non-collinear. These points are selected in such
a way that they cover the whole palm and then this allow to
draw 3D elements in the scene. In addition, an method that
emphasizes the interaction between real and virtual word is
proposed.

The rest of this paper is structured as follows: In Section
III, the method is described in detail, skin color detection,
hand shape identification, feature points extraction, pose
estimation and drawing virtual elements. In section IV, we
show experimental results of the system and present examples
of 3D scenes employing the hand’s user. We discuss benefits
and limitations of our method in Section V. The conclusions
are presented in Section VI.

III. METHOD DESCRIPTION

The proposed approach intends to achieve an Augmented
Reality System based on a real component of the scene (on
this occasion we use the user’s hand) that means without
introducing fiducial markers. The overall flow of the system
presented in this paper is as illustrated in Figure 2. The
detailed descriptions of the methods used are included in the
subsections that follow.

A. Skin Color Detection

For simplicity, we assume that this system will be used over
a desk. So, only a hand appears at the scene. This allows to
detect a hand very easily through skin color detection. To do
this, we propose the Lab color space which is a model with
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Figure 2. Workflow of the proposed system

a linear representation according to human color perception.
The dimensions in Lab color space are the luminosity L and
the two color components a and b, covering red to green and
blue to yellow axes respectively.

The conversion from RGB to Lab requires first converting
the color space XYZ. The formulas are listed as follow:

XY
Z

←
0.412453 0.357580 0.180423

0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

RG
B


X ← X

Xn
where Xn = 0.950456

Z ← Z
Zn

where Zn = 1.088754

L←
{

116 ∗ 3
√
Y − 16 for Y > 0.08856

903.3 ∗ Y for Y ≤ 0.08856

a← 500(f(X) − f(Y ))

b← 200(f(Y ) − f(Z))

where

f(t) =

{
3
√
t for t > 0.08856

7.787 t + 16
116 for t ≤ 0.08856

All captured images are converted from RGB to Lab color
space. Each pixel is then classified as either skin color pixel
or non-skin color pixel based on a fixed range of component
a of Lab color space. Good results are obtained by selecting
the range between 109 and 133 for component a. The binary



images are obtained as follows:

dst(x,y) =

{
255 (white) if 109 ≤ a(x,y) ≤ 133
0 (black) otherwise

where

dst(x,y) is pixel value of binary image on (x, y)
a(x,y) is component a pixel value of input image

With this we isolate the hand to generate a binary
image (Figure 3) and then continue with the hand shape
identification.

Figure 3. Skin color detection and binary image

In order to reduce the complexity for the detection of hands,
the video camera is used to capture images with a white
background where only the hand and forearm come into play.
If conditions do not allow to have a uniform color background,
it would be necessary to use background substraction methods
to remove the background and possibly also use methods
that use descriptions of the visual features such as HOG
(Histogram of Oriented Gradients).

Background subtraction is a widely used approach for
detecting moving objects in videos from static cameras with
which an image’s foreground is extracted. It detects the
moving objects from the difference between the current frame
and a reference frame, often called ”background image”. Its
use can be applied to the detection of moving objects such as
cars on the road [7], and our work can take advantage of it
for including complex backgrounds [8].

Another hand detection method which can improve the
accuracy with complex backgrounds is that referred above
HOG. In the work [9] HOG is used to identify hand gestures of
alphabets. This method increases the accuracy in segmenting
hand and avoids errors caused by using skin color detector
when the region of interest extracted includes forearm.

B. Hand Shape Identification and Feature Points Extraction

Hand geometry extraction begins by using the OpenCV
findContours function which returns a set of points that
form the contours in the binary input image. Some contours
may be contained within others. However, only the outermost
contours are retained and they are filled in with a solid color.
This way, a new binary image is created which works like a
mask to obtain a delineated image of the hands.

The points on the convex hull of this image are likely to
be fingers. However there will also be other convex points

because part of the arm may appear in the image. One way
to identify the convex points corresponding to finger tips is to
make use of convexity defects. The points that make up the
convex contour are found by making use of the convexHull
function, and the points in the convexity defects are calculated
using the convexityDefects function. The convex hull
includes the contour of the hand and by selecting the points
in each segment of it that are separated the most from this
hull, the points forming the bottom of the spaces between the
fingers are found. An example is shown in Figure 4.

Figure 4. The convex hull and convexity defects

One advantage of this finger detector is that the algorithm
is very simple, and its disadvantage is its low precision in
determining the number of extended fingers.

To avoid false positives in determining the number of fingers
extended, a condition for the depth of the concavity and
length between vertex of convex hull is defined. This condition
eliminates the possibility of detecting finger valleys where
there are none, e.g. in the case shown in Figure 5. The standard
deviation of the concavity depth is calculated:

sdepths =

√√√√ 1

N − 1

N∑
i=1

(di − x̄)
2

where

{d1, d2, . . . , dN} are the depth values (see Figure 5)

N is the size of the sample

x̄ = 1
N

N∑
i=1

di is the mean value

In addition, the standard deviation of the distances between
each vertex of the convex hull is calculated (denoted by
sdistances).

Thus, we take the valleys of the fingers for which the
following condition is met:

depthi > sdepths ∧ distancei < sdistances

In our system [3] we used fiducial markers where the its
four vertexes are benchmarks. Thus it is possible to identify
the plane where the marker is located. In this paper, the palm
is the benchmark, and we could then imagine a marker at the
center of the palm.



Figure 5. Condition to avoid detection of the wrist instead of finger valley

C. Hand pose estimation

Given a set of m points corresponding to

qm ↔ Qm

where qm denotes a homogeneous 2D coordinate of a point
in the camera image plane

qm =
[
xm ym 1

]T
and Qm denotes the corresponding 3D homogeneous

coordinate of the same point in the physical world

Qm =
[
Xm Ym Zm 1

]T
qm and Qm are related by so-called pinhole camera model

which describes the mathematical relationship between the
coordinates of a 3D point and its projection onto the image
plane using a perspective transformation (see Figure 6).

qm = A
[
R|t
]
Qm

orxm

ym
1

 =

f 0 cx
0 f cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



Xm

Ym

Zm

1


where
A is a camera matrix, or a matrix of intrinsic parameters
f is the focal length
(cx, cy) is camera centre point[
R|t
]

is the matrix of extrinsic parameters

The matrix
[
R|t
]

is used to translate coordinates of a
point (X, Y, Z) to a coordinate system, fixed with respect
to the camera. This matrix describes the camera’s location
in the world, and what direction it’s pointing. Those familiar
with OpenGL know this as the “view matrix” or “modelview
matrix”. It has two components: a rotation matrix R and a
translation vector t, but these don’t exactly correspond to
the camera’s rotation and translation. This matrix describes
how to transform points in world coordinates to camera

coordinates. The vector t can be interpreted as the position
of the world origin in camera coordinates, and the columns
of R represent represent the directions of the world-axes in
camera coordinates.

Camera

Camera
coordinate

system

World
coordinate

system

iq

iQ

X(c y, c  )

f

R, t

Figure 6. Relationship between a 3D point and its projection onto a plane

Considering the palm as a 2D plane positioned
perpendicular to z axis whose coordinate in z axis is
0, the 3D coordinates of all the feature points of the hand
can be calculated. This will be used as the model points
during the pose estimation process. Our system uses nine
feature points (five fingertips and four finger valleys). Note
that, the points calculated are from the user’s hand that will
be used for experiments. Different users might have different
measurement model points of the hand. With these nine hand
feature points we estimate the transformation matrix of the
camera.

D. Simple pose for interaction
In order to allow the user can interact with the system,

a finger valleys counter is implemented. We know that four
finger valleys are detected in an outstretched hand and three
valleys when two fingers are together (see Figure 7). In this
way we want to approach to idea of manipulate the virtual
objects like if we really hold them in our hands. The closest
thing to feeling that we could touch and manipulate them. In
this work, this detection of two fingers together is performed
to switch between a graphed 3D element and other.

E. Graphics Rendering Process
We use OpenGL (Open Graphics Library) for the

representation of 3D objects. OpenGL is a 3D graphics
software package in common use, based on computer graphics,
consistent with the principles of optics and vision. It makes
available to the programmer a small set of geometric primitives
(points, lines, polygons, images, and bitmaps) and provides
a set of commands that allow the specification of geometric
objects in two or three dimensions, using the provided
primitives, together with commands that control how these
objects are rendered [10].



Figure 7. Finger valleys counter for interaction

The 3D objects we used can be classified into some
categories: User defined simple objects, GLUT objects, and
complex three-dimensional models. GLUT is OpenGL Utility
Toolkit which includes a number of functions for create a set
of 3D objects such as sphere, cubes, cones and many others.
Each GLUT object has associated properties or attributes such
as radius of a sphere and size of a cube. Each object can also
be rendered in a wireframe form or a solid-like object. The
professional three-dimensional modeling software has strong
modeling capabilities and modeling vivid. There is a proposal
[11] to use the 3dsMAX to create complex three-dimensional
models and export the models created in 3ds file format,
then import the models into OpenGL program for interactive
controlling and rendering, and accomplish the creation of the
virtual scene together. In the Figure 8 we show the 3D objects
of our system.

Figure 8. Some 3D models of our system

IV. RESULTS

The presented system was developed in C++ along with
Qt library [12] (for the graphical user interface and event
management), OpenGL (for augmentation and 3D models),
the standard C++ library and OpenCV library, which provides
a large number of implementations of the algorithms most
widely used in image analysis and processing. Experiments

were performed on an HP ENVY 2.2GHz Intel Core i7
computer with 8GB DDR3 SDRAM at a rate of 15 fps with
an RGB camera with resolution of 640x480 pixels. The source
code is available in [13].

Table I
ACCURACY OF HAND AND FINGER GESTURES

Gesture Rotation Accuracy

Outstretched hand Frontal 100%
” ≈ 15◦ in y axis 95%
” ≈ 30◦ in y axis 50%
” ≈ 45◦ in y axis 10%

Fingertips forward ≈ 15◦ in x axis 100%
” ≈ 30◦ in x axis 70%
” ≈ 45◦ in x axis 20%

Fingertips back ≈ 15◦ in x axis 90%
” ≈ 30◦ in x axis 70%
” ≈ 45◦ in x axis 50%

Two joined fingers Frontal 100%
” >30◦ in y axis <40%

Fingertips forward >20◦ in x axis <40%
Fingertips back >20◦ in x axis <40%

The accuracy of our approach is shown in Table I. The first
results with outstretched hand frontally and fingers upward
were highly accurate. Then, with rotation on the vertical axis
we obtained good results even with a rotation of 15 degrees.
Exceeding 30 degrees, the results are not very accurate. This
limitation is due to the inefficiency of shape analysis to detect
the finger valleys when fingers cover up themselves.

Similar results are obtained with clockwise rotation and
leftward. With rotations on the horizontal axis, e.g. finger
forward or backward, the results are more favorable. Rotations
until 30 degrees are acceptable. The interaction joining two
fingers has drawbacks when exceeding 30 degrees rotation in
either axis (experiments were performed joined index finger
and middle finger).

Concerning the computational complexity, the proposed
approach is not particularly CPU demanding. The system
displays the video images to a rate close to 15 fps during
detecting hand and drawing the virtual elements.

V. DISCUSSION

Our experiments indicate the hand segmentation is
somewhat sensitive to changes in illumination when the
background (e.g. desk) is high in white. This makes the hand
gets white saturated. However when the background is black,
the detection accuracy is optimal.

Since we are using fingertips and finger valleys as
correspondence points for camera pose estimation, we have
limitations due to self occlusions and it is significant even for
a few degrees of movement as shown in Figure 9. As shown
in Table I, when the rotation exceeds 30 degrees, the accuracy
is low.

When our system loses tracking of the fingertips and finger
valleys due to occlusions, tries to detect them again. The use



Figure 9. Occlusion due to rotation

of more features on the hand and silhouette-based approaches
may be appropriate in order to deal with more hand poses and
self occlusions. Using statistical models such as Active Shape
Models [14] can be a good option to improve the tracking of
the hand.

This method is very sensitive to small changes in the
position of the fingers that leads to a different projection
than expected. This is because a requirement to achieve the
correct projection is that the hand feature points are coplanar
and non-collinear. In order not to depend on the position of
the fingers, selecting only points in the palm can give more
favorable results for these cases.

VI. CONCLUSION

Many prototypes implemented with sophisticated computer
vision algorithms to robustly recognize hand gestures have
demonstrated that gesture recognition is rather complex. The
method proposed in this paper has low computational cost and
with a simple shape analysis eliminates the finger valleys that
are false positives, so we can avoid the bad effect of them.
The pose estimation accuracy rate reaches high values when
the hand is frontally.

For future work, we want to improve the detection of finger
valleys and fingertips when the rotation of the hand exceeds the
threshold for acceptable detection. We pretend to accomplish
it by replacing the detection method through shape analysis
and instead choose descriptor methods in order to achieve a
greater invariance to changes in position and rotation. Methods
such as HOG (Histogram of Oriented Gradients) or SIFT
(Scale-Invariant Feature Transform) can be tested.

The possibility of interaction through joining two fingers
allows a realistic manipulation of the virtual contents. This
opens up a wider spectrum and introduces the concept of
Natural Interaction for creating Natural User Interfaces (NUI).
We envision a world where it is difficult to distinguish between
what is real and what is not. With recent advances made by
research groups around the world this idea will be part of the
very near future.
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