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Abstract—In this paper were evaluated identification methods
for linear parameter-varying systems (LPV) based on least
squares (LS) and support vector machines (LS-SVM). Both
strategies are compared by using a collected data set from
a real 350MVA generating unit. In this application is used a
local approach identification of LPV models in regression forms
and it is compared to a local LTI model in order to show the
advantages in modelling nonlinear systems by using an LPV
representation.

Resumen— En este trabajo se evalúan los métodos de iden-
tificación de sistemas de parámetros lineales (LPV) sobre la
base de los mı́nimos cuadrados (LS) y máquinas de vectores de
soporte (SVM-LS). Ambas estrategias son comparados usando
un conjunto de datos recogidos con ayuda de una verdadera
unidad de generación de 350 MVA. En esta aplicación se utiliza
un enfoque local identificación de modelos de LPV en formas de
regresión y se compara con un modelo local LTI con el fin de
mostrar las ventajas en el modelado de sistemas no lineales con
una representación LPV.

I. INTRODUCTION

Linear Varying Parameter (LPV) Systems are described by

linear differential equations which depends on time varying

parameters [1].Those parameters are known as scheduling

variables or scheduling parameters, which are often exogenous

and govern the dynamical behaviour of the system. The

scheduling variables define operating points of the system

while the relation between the system signals remain linear.

Therefore, an LPV system can be viewed as a collection of

linear time invariant (LTI) systems. However, it is important

to note that the scheduling variables also define the dynamical

behavior of the system. Hence, an LPV system is more than

a simple collection of LTI systems [2].

The basic idea of the identification of an LPV system is to

define the parameter dependence in terms of adequate basis

function known a priori. The first papers about LPV identifi-

cation assumed a priori knowledge of the basis functions and

dealt exclusively on the estimation problem, normally solved

in a lest-squares sense [3]. Those papers used a linear in

parameters regression to explain the system behavior and the

problem formulation was solved by a prediction error setting.

Assuming the knowledge of the structure of an LPV system

is sometimes valid because an LPV model can be obtained di-

rectly by the differential equations which describe the system.

However, in most cases this is not possible, it can be a difficult

task and in many cases will need specialist knowledge. For that

reason many papers on LPV identification are focusing on a

semi-parametric framework through least-squares supporting

vector machines (LS-SVM) [4], [5], [6]. Many papers had

introduced the LS-SVM Identification framework, one of them

to a class of non linear models [7] and to an Input-Output LPV

(LPV-IO) representation [8], [9].

Support Vector Machines (SVM) are supervised learning

tools formulated under the modern statistical learning the-

ory originally introduced by Valpnik to solve classification

problems. [10], [11]. LS-SVM is one reformulation of the

SVM original method when it’s considered a loss function to

solve a set of linear equations instead of solving a quadratic

programming problem. This method is attractive due to the

convexity of the problem leading to a unique optimal solution

[10].

In this paper, LPV identification strategies [1], [8], [9] are

assessed with data sets previously obtained in works [12] and

[13], which presented the design of adaptive power system

stabilizers to the damping of electromechanical oscillations.

Field tests were carried out in a 350 MVA hydro generator at

Tucuruı́ Power Plant (north region of Brazil) and input-output

data were acquired for some operating conditions of reactive

power. In [12] a classical gain-scheduling controller was

designed based in a local controller network and experimental

control tests showed the improvement of the response when

compared with local controllers.



Besides the gain-scheduling controller, results of design and

field tests of an LPV damping controller were published in

[13]. The LPV model was identified using the LPV LMS

method showed in [3]. The objective of this paper is the eval-

uation of LPV-IO models to represent the non-linear dynamics

of the hydro generator, instead of several local models as in

[12]. Two LPV identification methods are evaluated, a classical

LPV least squares [1] and the LS-SVM approach presented in

[8], [9].

It is worthy to remark that performing on-line identification

tests in large electrical generating units is a longstanding and

very important scientific and technological subject, as these

systems present time-variable and nonlinear behavior due to

varying loading condition or unforeseeable events, such as

changes in the line transmission configuration. Furthermore,

a generating unit is a critical equipment regarding its demand

for remaining in continuous operation and is subject to very

restrictive safety and regulation rules. As a consequence, it’s

not so easy to grant permission for performing identification

field tests in such a system. Therefore, it is of paramount

importance to propose new identification techniques able of

capturing the relevant system’s dynamics, for a whole set of

operating conditions. Therefore, it is a major contribution of

this paper to propose a LPV identification methodology able to

capture the operating point variable system dynamics without

the need of interrupting the normal system operation.

II. LPV SYSTEM IDENTIFICATION

There are many LPV system representations available, such

as, LPV-IO, LPV State Space (LPV-SS) representation, Linear

Fractional Transformation (LFT) description, and Orthonormal

Basis Function (OBF) [2]. In this paper is considered an

input-output representation. In the discrete time, one of the

most common model structures that relates input and output

in system identification is the autoregressive with exogenous

input (ARX) model [14]. This model is extended to an LPV-

ARX SISO (Single Input Single Output) model in (1).

y(k)+

na
∑

i=1

ai(pk)y(k−i) =

nb
∑

j=1

bj(pk)u(k−j−nk)+e(k) (1)

where k is the discrete time, u and y are, respectively, the

input and output, pk = p(k) is the scheduling variable, nk is

the discrete delay, and e is white noise with zero mean and

standard deviation σ2. The coefficients (ai,bj) of the LPV-

ARX model depend statically on p.

To be able to identify an LPV model in regression form it is

necessary to define a set of basis function (ψij ) to parametrize

the coefficients as

ai(p(k)) = θi0 + θi1ψi1(p(k)) + . . . θisiψisi(p(k)), (2)

where θij are the parameters to be estimated. This makes

the identification problem to be in a regression form and the

model to be linear in parameters, which can be solved by

least squares in the prediction error framework. Additionally,

this parametrization makes it possible to formulate an LPV

extension to the prediction error framework, making it possible

to analyse the stochastic properties of the estimation [2], [8].

Besides the order of the model structure (choice of na, nb,

delay), it is necessary an adequate choice of the set of basis

functions {ψij} in order to identify the dependencies of ai
and bi on p. This dependence could be polynomial or even

rational and discontinuous functions [2].

In order to formulate the LPV identification in a regression

form is defined
[

φ1 . . . φng

]T
≡ [a1 . . . ana

b1 . . . bnb
]
T
, (3)

where ng = na + nb, and each φ(·) is one function with

static dependence on p. In this form the process (1) can be

completely characterized by {φi(·)}
ng

i=1. This form is almost

exclusively done in the LPV literature [3], [8], [1]. Assuming

that each φi is linear parametrized as

φi(·) = θi0 +

si
∑

j=1

θijψij(·), (4)

where {θ}
ng ,si
i=1,j=1 are the unknown parameters and

{ψij}
ng ,si
i=1,j=1

, with si ∈ N are functions chosen by he

user. In this case, (1) can be written in regression form as

y(k) = θTϕ(k) + e(k), (5)

where θ =
[

θ1,0 · · · θ1,s1 θ2,0 · · · θ2,s2 · · · θng ,0 · · · θng,sng

]T

and

ϕ(k) = [−y(k − 1) − ψ11(pk)y(k − 1) · · ·

− ψ1s1(pk)y(k − 1) · · · − ψnasna
(pk)y(k − na) · · ·

u(k − nk) · · · − ψngsng
(pk)u(k − nb − nk + 1)]T .

Given a data set DN = {u , y , p}
N
i=1

, where N is the total

number of samples in the data set. The least squares estimates

of (5) is given by

θ̂ = argmin V (θ, e), (6)

where

V ≡
1

N
‖ e(k) ‖2l2 , (7)

and e(k) = y(k)− θTϕ(k).
In order to guarantee the identifiability and a unique solution

is considered that the regressors are persistently excited.

Organizing the data in matrices as

Y = [y(1) y(2) · · · y(N)]T , (8a)

Φ = [ϕ(1) ϕ(2) · · · ϕ(N)]T . (8b)

The LS solution of (6) can be obtained from (9).

θ̂N =
(

ΦTΦ
)

−1
ΦTY. (9)

III. LS-SVM FOR LPV SYSTEMS

In this section, it is showed how the SVM approach can be

made with respect to the estimate of (1) without specifying the

underlying dependencies needed for the optimization process

via least squares as demonstrated in [8].



A. LPV modeling in a SVM configuration

In contrast with the form of identification presented in Sec-

tion II, the structural dependency of the coefficients φi is as-

sumed to be a priori unknown. Consequently, the parametrized

model 1 may be introduced as

Mω,ϕ : y(k) =

ng
∑

i=1

ωT
i φi(pk)xi(k) + e(k), (10)

where each φi : R → R
nH denotes an undefined mapping,

potentially infinite and ωi ∈ R
nH is the ith vector of

parameters and

xi(k) = y(k − i), i = 1, · · · , na, (11a)

xna+1+j(k) = u(k − j), j = 0, · · · , nb. (11b)

Additionally, one can write ω = [ωT
1 · · · ωT

ng
]T ∈ RngnH and

ϕ(k) = [φT1 (pk)x1(k) · · · φTng
xng

(k)]T . (12)

Thus, equation (9) can be rewritten as

y(k) = ωTϕ(k) + e(k), (13)

the LS-SVM approach aims minimizing the following cost

function [10]

J(ω, e) =
1

2

ng
∑

i=1

ωT
i ωi +

γ

2

N
∑

k=1

e2(k), (14)

where γ ∈ R is a factor of regularization. The equation (14)

is the sum-of-norms criterion, containing both the error term

from the equation (10) as the Euclidean norm term of the

parameter vector ω [9]. Consider Mω,ϕ model proposed in (10)

whose estimation corresponds to the following optimization

problem

min J(ω, e) =
1

2

ng
∑

i=1

ωT
i ωi +

γ

2

N
∑

k=1

e2(k), (15a)

e(k) = y(k)−

ng
∑

i=1

ωT
i φi(k)xi(k). (15b)

This constrained optimization problem can be solved by

the Lagrange multipliers in the dual space [10], [8]. The

Lagrangian can be defined as

L(ω, e, α) = J(ω, e)−
N
∑

k=1

αk

(

ng
∑

i=1

ωT
i φi(k)xi(k) + e(k)− y(k)

)

, (16)

with αk ∈ R being the Lagrange multipliers. The global

optimum can be achieved when

∂L

∂e
= 0 → αk = γe(k), (17a)

∂L

∂ωi

= 0 → ωi =

N
∑

k=1

αkφi(k)xi(k), (17b)

∂L

∂αk

= 0 → e(k) = y(k)−

ng
∑

i=1

ωT
i φi(k)xi(k), (17c)

replacing 17a and 17b into 17c, the following set of equations

is obtained

y(k) =

ng
∑

i=1

(

N
∑

k=1

αkxi(k)φ
T
i (k)

)

φi(k)xi(k) + γ−1αk (18)

for k ∈ {1, ..., N}. This is equivalent to

Y = (Ω + γ−1IN )α, (19)

where α = [α1 · · · αN ]T ∈ R
N , and Ω is called the kernel

matrix, which is defined as

[Ω]j,k =

ng
∑

i=1

[Ωi]j,k, (20)

with

[Ωi]j,k = xi(j)φ
T
i (j)φi(k)xi(k)

= xi(j)〈〉φi(j), φi(k)〉xi(k)

= xi(j)(K
i(p(j), p(k)))xi(k).

Here Ki is a positive definite function that defines the inner

product φTi (j)φi(k). Consequently, Ki define Ω, characteriz-

ing the mapping {φi}
ng

i=1. This allows the characterization of a

wide range of nonlinear dependencies as a linear combination

of infinite functions defined by (nH = ∞) and the choice of

particular inner product. Called the Kernel trick [11], [15] ,

this approach enables the identification of the coefficients ai
and bj without explicitly defining the feature maps involved.

This same trick is used in many other optimization problems

such as pattern classification of nonlinear separability data. A

typical kernel is, for instance, the radial basis kernel (RBF)

defined as

Ki(pj , pk) = exp

(

−
‖pj − pk‖

2
l2

σ2
i

)

, (21)

although other kernels can be used, such as, the polyno-

mial and sigmoid kernels. The choice of kernel defines a

dependency class from which the problem can be represented.

Choosing a particular kernel, it is possible to obtain the

solution of (19) as

α = (Ω + γ−1IN )−1Y. (22)

The solution obtained minimizes (15a-b). The model esti-

mation can be obtained according with 17b. In this way, the

estimated coefficients are obtained as

ai(·) = ωT
i φi(·) =

N
∑

k=1

αkxi(k)K
i(p(k), ·), (23a)

bj(·) = ωT
j̃
φj̃(·) =

N
∑

k=1

αkxj̃(k)K
j̃(p(k), ·), (23b)

where j̃ = na+ j. Thus it is not necessary to know the vector

of parameters ω to estimate the model coefficients, just the

vector α and the defined kernel functions. Note that only the

product ωT
i φi(·) was accessible through the kernel trick. The

high dimensional parameters ω and the parameter mapping φi
is not directly accessible.



B. Advantages of a semi-parametric formulation

The LPV-SVM strategy does not require a specific statement

of the parameter mapping φi and neither the high dimension-

ality estimation of vector parameters ωi. It only requires the

kernel functions Ki for i = 1, · · · , ng. Thus, one can define

Kernel functions independents from each other. This allows

the insertion of a priori knowledge of the system behavior.

Compared to LS strategy in Section II, the LS-SVM strategy

is not easily subject to the problem of over-parametrization and

does not need basis functions defined explicitly, thus the LS-

SVM strategy can represent a large number of dependencies

according to the choice of the kernel function.

IV. DESCRIPTION OF THE APPLICATION

The strategies presented in sections II and III were applied

in a data set of a large generator system, originally collected

in [12], at Tucuruı́ hydroeletric power plant(THPP).

Figure 1 shows the instrumentation used during the data

acquisition field tests. Detailed block diagram of the generating

unit can be seen in [12], [13].

Figure 1: Instrumentation equipments

THPP is a very important power plant of the Brazilian

interconnected power system (IPS). The power plant is made

up of a set of 23 generating units (12 350 MVA and 11

375 MVA generating units), adding up to a total maximum

generation capacity of 8325 MVA.

The synchronous machines are equipped with fast thyristor-

based excitation systems along with high-gain AVR. Each

generating unit is equipped with a fixed-parameter PSS tuned

to damp inter-area electromechanical modes observed in the

large IPS.

To perform the identification procedure the system was

excited with a pseudo random binary signal (PRBS) of low-

amplitude to the AVR controller of a 350MVA generating

unit. The PRBS signal was designed to excite the range

of frequencies of the electromechanical oscillation modes in

electric power systems. The PRBS sequence was generated

in order to excite uniformly the system modes in the band

0.02–5.5 Hz, which contains the natural frequency of the

dominant electromechanical oscillation mode observed in the

generating unit [12].

The proposed dataset follows a local approach of LPV

system identification. The plant was excited while the level of

reactive power of the generator machine (scheduling variable)

was maintained constant. The data set contains three different

operation points defined by the level of the reactive power.

Figure 2 illustrates (part of the data set) the input (u - PRBS

signal on the AVR), output(y - active power deviation) of the

system and the scheduling variable (p - reactive power).
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Figure 2: Data from the generating unit

V. RESULTS

The dataset in Figure 2 was divided in two datasets, one

for the estimation and the other to validate the model. The

estimation dataset DE is composed by equally distributing

80% of the total original data set, while the remaining data is

used to compose the validation dataset DV .

The two strategies of sections II and III were applied to the

estimation data set DE . In both strategies it is investigated the

orders of the system by varying na, nb and nk.

For the LS strategy is used a polynomial dependence on

p such as (4) in each ψij = pj with j = 1, · · ·np, this

formulation is very common on LPV system identification lit-

erature [3]. While in the LS-SVM framework is adopted a RBF

kernel. Many system structures were tested (ns = 1, · · · , 10,

with s = {a, b, k, p}). It was noticed that the system could be

well represented by a model of order na = nb = 4 without

discrete delay nk = 1. High order models performed better

than fourth order, but increasing the order of the model can

over-parametrize and the performance showed it is not much

better than the model(na = 4, nb = 4, nk = 1). Moreover,

the fourth order model presented in [12] was demonstrated to

achieve good performances for control purposes.

To analyse the quality of the models obtained is used a

fitness function called best fir ratio (BRF) which is largely



used in the system identification to indicate the performance

of the model in relation to validation data [14], [8], [9], [16].

The BFR is defined as

BFR = 100%max

(

1−
‖x(k)− x̂(k)‖l2
‖x(k)− x̄‖l2

, 0

)

, (24)

where x̄ is the mean of (x). The BFR indicate how much

the simulated output of the model deviates from the expected.

When the BFR is close to 100, the better the model explains

the data, and the closer to zero the model fails to explain the

system behavior.

Another function of performance used in the LPV literature

is the FID function defined as

FID = 100%max

(

1−
var(x − x̂)

var(x)
, 0

)

, (25)

the idea is the same as (24), but this time is analysed the error

variation in relation to the variation of the expected signal.

To illustrate the advantage of an LPV representation were

estimated ARX-LTI models using the LS prediction error

approach. The ARX model is estimated using only data from

one operating point of DE where the reactive power is close

to zero. The estimated ARX model obtained is

θLS−ARX = [−2.26 1.99 −0.73 0.12 −5.7 ∗ 10−3

−0.14 0.02 0.16]T .

Table I shows the estimated parameters from the LPV-ARX via

LS. Figure 3 illustrate the variation over p of the coefficients

(A(p) and B(p)) obtained in the model LPV-ARX estimated

using the LS algorithm. The same illustration is done by the

model obtained via LS-SVM. Figure 4 shows the variation

over p of the LPV-ARX model estimated via LS-SVM.

Table I: Parameters of the estimated LPV-ARX

p0 p1 p2 p0 p1 p2

a1 -2.24 0.02 -0.10 b1 -0.005 -0.006 -0.005

a2 1.97 0.04 0.01 b2 -0.14 0.07 -0.03

a3 -0.69 -0.03 0.18 b3 0.01 0.017 0.04

a4 0.11 -0.007 -0.16 b4 0.17 -0.06 0.003

Table II presents the results of the three models obtained

by the algorithms presented in this paper. The results are all

evaluated using DV . The validation data set DV is separated in

three different regions (a, b and c) according with the operation

point defined by reactive power. It is valid to remind that the

model structure(4,4,1) represents (na, nb, nk).
As expected, the ARX-LTI model has a good performance

in the region where the model is estimated, while in others

regions the model barely represents the system behavior.

However, the LPV-ARX models can considerably represent

the system with approximately the same results in the three

regions defined.

Although the strategy presented in [9] takes into account

the noise in the scheduling variable, in this paper it has not

been observed a great improvement in relation to the original

LS-SVM introduced in [8].

Other kernels were tested, such as, polynomial and sigmoid

kernels, but both were not able to overcome the Kernel RBF

with respect to each evaluation function (BFR and FID).

The parameters of the kernel functions were evaluated

through trial and error strategy. It has not been observed any

relative improvement while tuning the RBF parameters. The

σ was chosen 1.2 for i = 1, · · · , ng and γ = 1e5.

Table III shows the mean and the standard deviation of the

error of the three models estimated in this paper.

Table III: Mean and Standard Deviation of the error

Model(4,4,1) mean std

ARX-LTI -0.0047 0.0544

LPV-ARX -0.0049 0.0161

LS-SVM-ARX -0.0048 0.0264

VI. CONCLUSION

In this paper have been compared two strategies to obtain

LPV-ARX models. An LTI ARX Identification was performed

to illustrate the advantages of LPV models to represent a

system in many operating conditions.

Both strategies had a good performance on identifying

the LPV structure. The LS-SVM was not able to perform

better results even considering the noisy scheduling variable

case. In fact, the noisy case performs slightly better than

the original LS-SVM, but not enough to overcome the least

squares solution.

The best kernel function was the RBF even varying the

orders of the model structure (na, nb, nk) the RBF kernel

maintained a better performance related to the other kernels

analysed (polynomial and sigmoid), but considerably worse

than an equivalent LPV model with same order estimated by

LS.
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