Propuesta de Mejora del Sistema de Inventario en una Fábrica de Golosinas

Rossetti, Germán*, Arcusin, Leticia

Depto. de Ingeniería Industrial, Fac. de Ingeniería Química, Universidad Nacional del Litoral. Santiago del Estero 2829, Santa Fe, Argentina. *groseti@fiq.unl.edu.ar

RESUMEN

En la actualidad, las empresas presentan problemas en sus políticas de inventarios de diversas características y a su vez muy particulares en cada organización. Por dicha razón, en los últimos años se ha comenzado a prestar mayor importancia a la elección de la gestión de los inventarios, de modo de poder subsanar esta problemática íntimamente relacionada con los costos de producción. El mantenimiento de inventarios adecuados en una empresa posee implicancias no sólo económico-financieras, sino logísticas, limitaciones de espacio físico e incluso de producción; de allí que en su determinación se empleen grandes cantidades de tiempo y dinero. En el presente trabajo se propone una mejora del sistema de inventario de materias primas para una PyME productora de golosinas, radicada en la ciudad de Santa Fe, Argentina. Utilizando técnicas apropiadas, y considerando las características que presenta la organización con respecto a las diversas variables de la gestión de inventarios, se considera apropiada la elección del sistema EOQ de control de inventarios, que determina un lote fijo de cada producto y las reposiciones del mismo se realizan cuando las existencias llegan a un mínimo establecido. Con la finalidad de implementar dicho modelo de gestión, se determinan los parámetros correspondientes, considerando las características particulares de la empresa analizada.

Palabras Claves: Inventario, Materias Primas, PyME, Golosinas.

ABSTRACT

Today, companies have problems in their inventory policies with different characteristics and very particular in every organization. For this reason, in recent years it has begun to pay more attention to the choice of inventory management, so that we can rectify this problem closely related to production costs. Maintaining adequate inventory has not only economic and financial but logistical implications, limitations of physical space and even production, hence its determination that large amounts of time and money are used. In this paper an improvement of Inventory System for Commodities in a SME candy producer, based in the city of Santa Fe, Argentina, is proposed. Using appropriate techniques, and considering the characteristics of the organization with respect to different variables of inventory management is considered appropriate choice of EOQ inventory control system, which determines a fixed batch of each product and reruns of the same performed when stocks reach an established minimum. In order to implement this management model, the corresponding parameters are determined, considering the particular characteristics of the analyzed company.

Key Words: Inventory, Commodities, SMEs, Candy

1. INTRODUCCIÓN

Para muchas empresas, la cifra del inventario es el mayor de los activos circulantes [1]. Cuando una empresa se queda sin inventario, los resultados obtenidos suelen no ser agradables. Así, si se trata de un simple comercio, el comerciante pierde la utilidad bruta de este artículo. En cambio, si la empresa es un fabricante, como es el caso de la empresa bajo estudio, la falta de inventario (incapacidad de abastecer alguna de las materias primas) podría detener la producción, generar costos excesivos, imposibilitar el cumplimiento de las fechas de entrega de ventas, generar pérdida de competitividad, entre otras cosas [2]. Por otro lado, si se mantienen inventarios excesivos, el costo de mantenimiento puede representar la diferencia entre utilidades y pérdidas. En conclusión, la administración habilidosa de los inventarios puede hacer una contribución importante a las utilidades de la empresa [3].

En adición a lo mencionado anteriormente, es importante destacar la inexistencia de un sistema de control de inventarios en la empresa objeto del presente análisis. Debido a ello, no existe un control periódico de existencias ni un sistema que respalde la compras de materiales, las cuales se realizan en intervalos de tiempo variables, basándose en la producción semanal, posibles descuentos por cantidad, mayor o menor presión a las importaciones, etc. Los encargados de planta confeccionan registros individuales en planillas de cálculo que luego son enviadas al jefe de planta, y es éste el responsable de la decisión de compra, por contar con mayor antigüedad y experiencia en el rubro.

Por tal motivo, en el presente trabajo se plantea la revisión de las políticas de compra de aquellas materias primas de mayor relevancia por su consumo en el proceso productivo y sus requerimientos de espacio, y se propone la optimización de las mismas.

2. DESCRIPCIÓN DE LA EMPRESA

La empresa bajo estudio se encuentra ubicada en la ciudad de Santa Fe, Argentina, y se dedica a la producción, comercialización y distribución de golosinas. En la actualidad, elabora tres tipos diferentes de gomas de mascar y una línea de caramelos masticables. A los fines de conservar la confidencialidad, se los llamará Producto A, Producto B, Producto C y Producto D. El Producto C es el que tiene mayor salida, representando el 80% de la producción y se fabrica en cinco sabores diferentes: tuti-fruti, banana, menta, frutilla y uva. El Producto B es el que tiene menor salida, representando sólo el 8% de la producción. También se fabrica en cinco variedades: sandía, naranja, uva, banana y frutilla. Finalmente, el Producto A representa el 12% de la producción y se elabora en tres sabores: tuti-fruti, menta y frutilla.

3. ANÁLISIS DE MATERIAS PRIMAS

Para determinar cuáles son las materias primas que más impacto generan sobre el depósito, se recurre al análisis de la receta de producción de cada producto final.

Tabla 1. Porcentaje de Materia Prima para cada producto final

MP e Insumos	Producto A	Producto B	Producto C	Producto D
Glucosa	19,66%	17,84%	26,00%	46,90%
Azúcar	57,03%	63,74%	56,82%	38,90%
Goma	15,67%	16,71%	16,00%	
Glicerina	0,60%	0,18%	0,26%	
Lecitina	0,25%	0,26%	0,40%	
Esencia	0,47%	0,45%	0,52%	0,28%
Agua	4,18%			10,32%
Colorante	0,49%	0,82%		0,04%
AVH + Lecitina				3,28%
Ácido Cítrico				0,28%
Cerelose	1,65%			
Porcentaje Total	100,00%	100,00%	100,00%	100,00%

A su vez, es necesario relacionar la receta productiva de los distintos productos finales con los incrementos en producción esperados, para obtener un panorama global referente a las necesidades de materias primas. La información detallada de los mismos se puede observar en la Tabla 2. Cabe aclarar que los incrementos en la productividad para cada año y cada producto son estimaciones realizadas, pudiendo presentarse cierta variación en los mismos. Finalmente, relacionando las tablas anteriores (Tabla 1 y Tabla 2), en la Tabla 3 se detallan los requerimientos totales de materia prima por mes para los años 2012, 2013 y 2014.

Tabla 2. Producción mensual estimada para cada año

Producto	2011	2012	2013	2014
Aumento de productividad Producto C		15,00%	25,00%	30,00%
Aumento de productividad Producto A		10,00%	20,00%	30,00%
y Producto B				
Producción mensual Prod.C (kg.)	49.333	56.733	70.916	92.191
Producción mensual Prod. A y Prod.	14.368	15.805	18.966	24.655
B (Kg.)				
Subtotal de Producción Mensual (kg.)	63.701	72.538	89.882	116.847
Producción mensual Prod. D		90.000	90.000	90.000
Total de Producción Mensual (kg.)	63.701	162.538	179.882	206.847

Es importante destacar que no se consideran ni la glucosa ni el agua, debido a que las mismas no se almacenan en el depósito. En el caso de la glucosa, se almacena en un tanque externo con una capacidad de 28 toneladas. Algo similar ocurre con el agua, la cual es adquirida de la red de agua potable de la zona.

Como se puede observar en la Tabla 3, el azúcar y la goma base representan más del 90% de los requerimientos de materias primas que posee la fábrica (habiéndose descontado la glucosa y el agua), por lo cual el estudio de las políticas de inventario de materias primas se enfoca sólo en ellas. Esta decisión tiene sustento en la denominada Ley de Pareto o "regla 80/20", que sostiene la importancia sobre los costos que un pequeño grupo de materias primas, las "pocas necesarias", reviste sobre el conjunto de ellas [4].

Tabla 3. Requerimiento mensual total de Materia Prima por año

Materias	2012 Requerimiento	2013 Requerimiento	2014 Requerimiento	
Primas	en Kg.	en Kg.	en Kg.	
Glucosa	59.785	64.376	71.026	
Azúcar	75.440	86.121	101.454	
Goma	11.329	14.319	18.615	
Glicerina	234	299	389	
Lecitina	3.214	3.283	3.382	
Esencia	614	709	846	
Agua	9.888	10.081	10.318	
Colorante	107	130	158	
Cerelose	237	313	407	
Ácido Cítrico	252	252	252	

4. ELECCIÓN DE UNA POLÍTICA DE INVENTARIO

La política de inventarios consiste en determinar el nivel de existencias económicamente más conveniente para la empresa [5]. En este contexto, la aplicación de los modelos de inventario tiene como objetivo resolver las siguientes preguntas básicas: ¿Qué cantidad se debe solicitar en cada pedido?, y ¿cuándo se debe realizar el pedido? Para llegar a establecer una política de inventarios adecuada, se deben considerar los siguientes factores: (i) Las cantidades necesarias para satisfacer las necesidades de ventas; (ii) La naturaleza perecedera de los artículos; (iii) La duración del periodo de producción; (iv) La capacidad de almacenamiento; (v) La suficiencia de capital de trabajo para financiar el inventario; (vi) Los costos de mantener el inventario; (vii) La protección contra la escasez de materias primas y mano de obra; (viii) La protección contra aumento de precios; (ix) Los riesgos incluidos en inventario; (x) Bajas de precios; (xi) Obsolescencia de las existencias; (xii) Pérdida por accidentes y robos; (xiii) Falta de demanda, etc. En consecuencia, considerando los factores mencionados, la información brindada por la empresa, su forma de operar y las características financieras de la misma, se opta por utilizar un modelo de inventario clásico: el modelo EOQ (Economic Order Quantity, modelo de cantidad de pedido fijo) [3]. Este modelo determina un lote fijo de cada producto y las reposiciones del mismo se realizan cuando las existencias llegan a un mínimo establecido (Figura 1). Tiene como bases regular la financiación inmovilizada de las existencias y mantener un inventario sin falta de productos, dos características consideradas claves por parte de de la empresa.

Nivel de inventario Cant. óptima de pedido Q* Punto de pedido (ROP) Plazo de entrega

Figura 1. Representación Modelo EOQ

Los supuestos del modelo son: (i) La demanda (D) es conocida y constante (todos los picos de D poseen igual valor), (ii) El material se entrega en su totalidad en un instante (pendiente recta en la reposición del material), (iii) El plazo de entrega es conocido y se mantiene (plazo de entrega o LT constante), (iv) La demanda de los diferentes materiales es totalmente independiente entre sí. Cada pedido es por un solo material y así es entregado y (v) Los únicos costos que cambian son los de almacenamiento y los de preparación del pedido.

Con motivo de acercar el modelo a la realidad, se deja de lado la hipótesis del plazo de entrega inmediato e instantáneo. Es necesario entonces definir un momento, previo a la escasez, en el cual emitir el pedido. Se determina así el ROP o punto de reorden, como el producto de la demanda (D) diaria por la cantidad de días que toma el pedido en arribar a fabrica (LT). La Ecuación (1) expresa cómo se calcula el ROP:

$$ROP = D \times LT \tag{1}$$

Una vez definido el momento en que debe realizarse el pedido, solo resta conocer la cantidad a pedir, de manera de lograr responder a las dos preguntas básicas enunciadas anteriormente, es decir, cuánto y cuándo comprar. La cantidad económica de pedido es aquella que minimiza la función de costo total. Matemáticamente, este costo mínimo total se presenta cuando el costo de pedido y el costo de mantenimiento son iguales. El costo total para un periodo está conformado de la siguiente manera:

Costo Total (t) = [Costo Unitario por periodo] + [Costo de Ordenar un pedido] + [Costo de mantenimiento de Inv. en un periodo]

La ecuación que expresa estas definiciones es:

$$CT(t) = D * P_{unitario} + \frac{D}{O} * C_{pedido} + \frac{1}{2}Q * C_{mi}$$
 (2)

Al derivar esta expresión se obtiene:

$$Q^* = \sqrt{\frac{2 * D * C_{pedido}}{C_{mi}}}$$

La Ecuación (3) determina el tamaño de lote económico que ocasiona un costo mínimo; cualquier otra cantidad pedida ocasiona un costo mayor.

4.1. Costos relacionados con el inventario

Son los gastos incurridos para abastecer los almacenes de la empresa y se clasifican en:

- a) Costo o precio de compra (*Punit*): Incluye el precio de un artículo más los impuestos, los gastos de compra y los costos del transporte.
- b) Costos de pedido (*Cpedido*): Son los que incluyen los costos fijos de oficina para colocar y recibir un pedido, o sea, el costo de preparación de una orden de compra, procesamiento y verificación contra entrega. Incluye los gastos administrativos fijos para formular y recibir un pedido, esto es, el costo de elaborar una orden de compra, de efectuar los trámites resultantes y de recibir y cotejar un pedido contra su factura. Los costos de pedidos se

formulan normalmente en términos de unidades monetarias por pedido. Estos costos varían en razón directa al número de órdenes colocadas, y no con el tamaño o monto de la orden.

- c) Costo mantenimiento de inventario (*Cmi*): Dentro de los costos de mantenimiento se incluyen el costo de capital (financieros), equipo de almacenamiento y movimientos, edificios, costo de espacio ocupado, depreciación, rentas, impuestos, seguros, costo de oportunidad, riesgos, deterioro, mermas, desperdicios, obsolescencia, etc. Son los costos variables unitarios de mantener un artículo en el inventario por un periodo determinado.
- d) Costos de penalización por inexistencia de materiales: Estos costos son proporcionales a las ventas perdidas por inexistencia del producto. Frecuentemente, no es cuantificable si la carencia del material produce problemas de pérdida de imagen, como es el caso de empresas de distribución, en las que se produce una degradación de disponibilidad o seguridad, como consecuencia de la falta de productos a ofrecer en el mercado.
- Si bien existen otros costos asociados a la gestión de inventarios, los aquí mencionados son los necesarios para realizar los cálculos y determinar el tamaño económico de lote.

4.2. Determinación del Costo de Mantenimiento

El primer cálculo necesario de realizar, común a ambas materias primas, es determinar el Costo de Mantenimiento de Inventario (*Cmi*) equivalente. Para ello se trabaja en base a los valores del depósito que la empresa alquila en la provincia de Buenos Aires. Los datos relevados para tal fin son los siguientes: (i) Dimensión: El depósito posee una superficie de 1000 m2 y una altura disponible de 6 metros (la altura está definida por los racks). Del total de los 1000 m2 del depósito, un 40% está disponible para el almacenamiento, ya que el resto lo ocupan los pasillos, baños, áreas de recepción y embarque, estructura de los racks, etc. Finalmente, el espacio total disponible para almacenamiento es de 2400 m3, (ii) Impuestos, Servicios y Alquiler: El costo de alquiler del depósito ronda los USD 6085,19 mensuales, a lo cual se suman gastos de USD 608,52/mes en impuestos y USD 1622,72/mes en servicios (gas, agua y energía), (iii) Operación: El funcionamiento del depósito está a cargo de 3 personas, con un salario promedio de \$ USD 1419,88/mes A su vez, se gastan aproximadamente USD 1419,88/mes en nafta y lubricante para los dos autoelevadores. Los demás equipos de movimiento de materiales no son motorizados, razón por la cual no se consideran dentro del costo de operación y (iv) Costos de seguridad: USD 1217,04/mes. Se calcula como el salario de un empleado de seguridad.

Finalmente, el costo de mantenimiento de inventario en base a la información adquirida se obtiene como:

$$C_{mi}(\$/t*m^3) = \frac{C_{serv,alq\ e\ imp} + C_{personal} + C_{operaci\ \acute{on}} + C_{seguridad}}{espacio\ total\ disponible} \tag{4}$$

Con los datos presentados, el costo de mantenimiento de inventario es de USD 6,34/mes* m3 o \$USD 76,06/año*m3. Se utiliza el m3 como referencia general, pero en cada caso particular se vincula el costo a la unidad de producto a almacenar, ya sean bolsas de goma, azúcar, etc.

4.3. ANÁLISIS DE LA POLÍTICA SELECCIONADA

A continuación se desarrolla el cálculo del tamaño de lote económico (EOQ) y el costo anual total (*CTt*) de dicha política para el azúcar y la goma base, contrastándolo con el costo actual, acorde a las políticas adoptadas por la empresa, de manera de evaluar posibles mejoras. Se analiza individualmente el comportamiento de cada una de estas materias primas, de forma de lograr un estudio ordenado.

4.3.1. Azúcar

La política actual de la empresa para el azúcar tiene como objetivo mantener un stock semanal fijo de 100.000 Kg, es decir, 2000 bolsas de 50 Kg. Este producto es adquirido en el mercado nacional, específicamente mediante un proveedor localizado en la provincia de Tucumán.

El azúcar arriba a la fábrica en bultos sellados con film termocontraíble. Cada bulto contiene 24 bolsas de 50 Kg, con un volumen final de 1,44 m3 (cada bolsa ocupa 0,06 m3). Para cumplir con esta política, se realizan compras semanales que oscilan entre las 400 y las 550 bolsas de azúcar, dependiendo de la diferencia entre las existencias y el target definido anteriormente. Para el presente análisis y con el fin de determinar ahorros, se considera la política de la empresa bajo estudio como un pedido promedio de 550 bolsas semanales. El precio unitario FOB es de USD 27,38/bolsa para pedidos menores a 700 bolsas. Para pedidos mayores 700 bolsas se accede a un descuento del 5%, por lo que el precio unitario resulta de USD 26,01/bolsa. Por otro lado, el precio unitario del azúcar se calcula como:

$$P_{unitario\ az\'ucar} = P_{unitario\ FOB} + \left(\frac{C_{transporte}}{Q}\right)$$
 (5)

Para transportar el azúcar, la empresa utiliza un camión propio que es enviado inicialmente con producto terminado hacia el norte del país para abastecer los distintos clientes y puntos de venta de Tucumán, Salta y Catamarca. El mismo tiene un costo estimado entre el 2-3% del costo de la mercadería (producto final) transportada y una capacidad máxima de 32.000 Kg. El costo de transporte es de USD 1.906,69/viaje (con capacidad para 640 bolsas), mientras que el costo de transporte adicional es de USD 2.097,36/viaje (con capacidad para 640 bolsas) y de USD 689,66/viaje (con capacidad para 170 bolsas).

El costo de pedido para este tipo de producto, y acorde a las cantidades solicitadas, se estima como media jornada laboral del encargado de planta (tiempo y recursos necesarios para efectuar el pedido y cotejarlo), y una jornada laboral completa de dos operarios (tiempo requerido para descargar, cotejar y acomodar el producto en racks), cuyos salarios mensuales son USD 2.028,40/mes y USD 1.419,88/mes respectivamente. Se considera que un mes posee en promedio 23 días laborales. Por lo tanto, el costo de pedido asciende a USD 167,56. No se consideran los gastos de comunicación y papeleo de manera individual, ya que están incluidos en los costos por empleado. El Costo de mantenimiento de inventario de azúcar es de USD 0,38/mes x bolsa ó USD 4,56/año x bolsa. La demanda diaria es de 65,6 bolsas, la demanda mensual, de 1.508,8 bolsas y la demanda anual, de 18.105,6 bolsas. El plazo de entrega (LT) es de 5 días hábiles.

Con los datos proporcionados, en primer lugar se calcula el Costo Total Anual según la política de la empresa, es decir, buscando mantener un stock de 2000 bolsas. En este sentido, el encargado sugiere realizar un pedido de 550 bolsas semanales como promedio. Para esta cantidad de bolsa, utilizando la Ecuación (5) se obtiene que el precio unitario es de USD 30,85.

Utilizando la Ecuación (2), el costo total anual de la política aplicada por la empresa es:

$$CT \ az\'{u}car \ actual_{anual} \ = \left(18.106\frac{bolsas}{a\~{n}o}*\frac{USD30,85}{bolsa}\right) + \left(18.106\frac{bolsas}{a\~{n}o}*\frac{USD187,85}{550 \ bolsas}\right) + \left(\frac{550 \ bolsas}{a\~{n}o*bolsa}*\frac{USD4,56}{2}\right)$$

Por lo tanto, el costo total anual de azúcar actual resulta de USD 566.008,12, considerando pedidos de 550 bolsas semanales.

A continuación, se calcula la cantidad óptima a pedir y el costo total anual de azúcar utilizando una política EOQ y las siguientes restricciones respecto a las cantidades a adquirir: (i) La gerencia sugiere que la cantidad a adquirir en ningún caso supere las 1500 bolsas, (ii) El proveedor ofrece un descuento del 5% en el precio unitario para cantidades mayores a 700 bolsas. Por encima de las 1400 bolsas, el descuento alcanza el 6%, (iii) La capacidad máxima del transporte propio es de 640 bolsas (32.000 Kg). El costo de un camión adicional con idéntica capacidad (640 Bolsas) es de USD 2.097,36. En caso de que el nivel óptimo de pedido alcance el máximo establecido por la gerencia, se contratará un tercer camión con capacidad para 8500 Kg (170 Bolsas) cuyo costo estimado es de USD 689,65, (iv) El azúcar debe ser transportado y almacenado en sacos de papel en un lugar cerrado, con una humedad relativa entre 55 – 65%, y a una temperatura 2°C sobre la temperatura ambiente. Bajo esas condiciones, el azúcar presenta un comportamiento estable por período de 2 años y (v) El plazo de entrega o LT es de 5 días hábiles, ya que se trata de un proveedor local.

. Utilizando la Ecuación (3) se obtiene Q* = 1153,517 ~ 1154 bolsas de 50 Kg es la cantidad óptima a ordenar. El momento en el cual debe ser liberada esa orden se determina mediante la Ecuación (1) como ROP = 65,6 Bolsas/día x 5 días = 328 Bolsas.

En conclusión, la política EOQ propone realizar pedidos de 1154 bolsas de azúcar cada vez que las existencias alcancen las 328 unidades; dicho de otra manera, emitir una orden por 1154 bolsas cada 12 días laborales aproximadamente. Para esta cantidad de bolsa, utilizando la Ecuación (5) se obtiene que el precio unitario es de USD 29,48. El costo anual de dicha política, realizando el mismo análisis que se utilizó para costear la política de la empresa es:

$$CT \; EOQ_{anual} \; = \left(18.106 \frac{bolsas}{a\|o} * \frac{USD \; 29,48}{bolsa}\right) + \left(18.106 \frac{bolsas}{a\|o} * \frac{USD \; 167,56}{1154 \; bolsas}\right) + \left(\frac{1154 \; bolsas}{a\|o * bolsas} * \frac{USD \; 4,56}{a\|o * bolsas}\right)$$

Por lo tanto, el costo total anual de azúcar, con la política propuesta, resulta igual a USD 539.024,98. Como puede observarse, la realización de pedidos de mayor cantidad y con una menor frecuencia si bien implica un mayor costo de transporte, permite aprovechar descuentos por cantidad y por ende un menor precio unitario. La utilización de una política fundamentada en los costos le permitiría a la empresa bajo estudio lograr un ahorro anual del 4,64 % (USD 26.983,14) para el año 2012.

Otra opción interesante de explorar es aquella en la cual el pedido formulado completa la capacidad de transporte, en este caso, las 1280 bolsas. Esta opción permite disminuir el precio unitario debido a un mejor prorrateo de los costos de flete, al mismo tiempo que incrementa las

cantidades a almacenar, y por lo tanto sus costos. El costo total anual para un pedido de 1280 bolsas es:

$$CT \; EOQ_{anual} \; = \left(18.106 \frac{bolsas}{a\|o} * \frac{USD \; 29,14}{bolsa}\right) + \left(18.106 \frac{bolsas}{a\|o} * \frac{USD \; 167,56}{1450 \; bolsas}\right) + \left(\frac{1450 \; bolsas}{a\|o * bolsas} * \frac{USD \; 4,56}{a\|o * bolsas}\right)$$

Por lo tanto, el costo total anual, con la política propuesta, resulta igual a USD 530.021,96, permitiendo un ahorro de USD 35.320,92 (6,25%).

Sin dudas, el beneficio obtenido por un meior uso de los recursos sugiere que la cantidad óptima a ordenar es de 1280 bolsas, manteniendo el punto de reorden en 328 bolsas.

A continuación se realiza el mismo análisis para los dos años subsiguientes. Los resultados obtenidos se presentan en la Tabla 4.

Tabla 4. Política de aprovisionamiento de azúcar 2012-2014

POLÍTICA ACTUAL	Cantidad Q*	Costo Total Q*	Ahorro v Política actual
			Politica actual

POLÍTICA ACTUAL		Cantidad Q*	Costo Total Q*	Ahorro vs. Política actual	Ahorro Porcentual
2012	Política actual	550	USD 565.342,88		
	1 camión	640	USD 555.945,74	USD 9.397,14	1,66%
	EOQ	1154	USD 539.098,24	USD 26.244,64	4,64%
	2 camiones	1280	USD 530.021,96	USD 35.320,92	6,25%
2013	Política actual	550	USD 645.192,49		
	1 camión	640	USD 634.436,06	USD 10.756,43	1,67%
	EOQ	1232	USD 610.487,32	USD 34.705,17	5,38%
	2 camiones	1280	USD 607.970,26	USD 37.222,22	5,77%
2014	Política actual	550	USD 759.841,95		
	1 camión	640	USD 747.133,83	USD 12.708,12	1,67%
	2 camiones	1280	USD 715.695,92	USD 44.146,02	5,81%
	EOQ	1338	USD 724.938,75	USD 34.903,20	4,59\$
	3 camiones	1500	USD 709.086,54	USD 56.840,60	6,68%

En conclusión, la política sugerida para la empresa referente al azúcar consiste en realizar pedidos de 1280 bolsas de 50 Kg para los primeros dos años (2012 y 2013), y 1500 bolsas en el último año (2014). En todos los casos los pedidos deben ser liberados cada vez que las existencias alcancen las 328 bolsas, logrando así los mayores ahorros durante los 3 años analizados.

4.3.2. Goma Base

La goma base es la tercer materia prima de mayor consumo en los procesos productivos de la empresa. La política de inventario aplicada para este producto es similar a la seguida en el caso del azúcar, diferenciándose en que lo que se fija es un período de tiempo y no una cantidad a adquirir. En este sentido, el encargado de planta realiza los pedidos en base a la diferencia entre el stock actual y un target fijo (requerimiento bimestral), pudiendo variar entre las 900 y 1000 bolsas. La goma es adquirida en bolsas reforzadas de 25 Kg, con un promedio de 40 bolsas por

Esta materia prima es importada de Brasil, uno de los productores más grande de goma del Cono Sur. Debido a ello, un pedido tiene una demora promedio de un mes, tiempo necesario para realizar trámites aduaneros, lograr permisos y demás formalidades para su importación. El precio unitario FOB es de USD 54,77/bolsa para pedidos menores a 2000 bolsas. Para pedidos mayores 2000 bolsas se accede a un descuento del 5%, por lo que el precio unitario resulta de USD

Otra diferencia con los pedidos de azúcar se observa en los costos. Cada encargo insume, en promedio, una jornada laboral completa del encargado de planta, debido a las negociaciones y el papeleo necesario para la importación de materia prima. A su vez, requiere dos personas durante una jornada completa para su correcta recepción, almacenamiento y actualización de registros de existencias. Los salarios mensuales son USD 2.028,40/mes y USD 1.419,88/mes respectivamente A ello se le suman otros costos aduaneros y gastos por servicios de importación que, según estimaciones brindadas por la empresa, alcanzan los USD 608,52 por pedido. Considerando que un mes posee en promedio 23 días laborales, el costo de pedido asciende a USD 820,18. El costo

de transporte es de USD 4.000/viaje (conteiner con capacidad para 1000 bolsas). Por lo tanto, el precio unitario de la goma base se calcula como:

$$P_{unitario\ goma\ base} = P_{unitario\ FOB} + \left(\frac{C_{transporte}}{Q}\right)$$
 (6)

La demanda diaria es de 19,7 bolsas, la demanda mensual, de 453,16 bolsas y la demanda anual, de 5.437,92 bolsas. El plazo de entrega (LT) es de 30 días.

El costo de mantenimiento en inventario es el mismo estimado para el azúcar, ya que se obtiene en base a las mismas consideraciones realizadas anteriormente. En forma genérica, es de USD 6,34/mes x m³ o USD 76,06/año x m³, lo que es igual a decir USD 0,19/bolsa x mes ó USD 2.29/año x bolsa.

Siguiendo la metodología propuesta y aplicando la Ecuación (2), el costo total anual para la goma base según la filosofía actual de la empresa es:

$$CT\ g.\ base\ actual_{anual}\ =\ \left(5.437,92\,\frac{bolsas}{a\,\|o\|}*\,\frac{USD\ 58.64}{bolsa}\right) + \left(5.437,92\,\frac{bolsas}{a\,\|o\|}*\,\frac{USD\ 820,18}{1000\ bolsas}\right) + \left(\frac{1000\ bolsas}{2}*\,\frac{USD\ 2.29}{a\,\|o\|}*\,\frac{USD\ 58.64}{2}\right)$$

Por lo tanto, el costo total anual para la goma base, según la política actual de la empresa es de USD 324433,85/año, considerando pedidos de 1000 bolsas.

Luego, se calcula el costo total anual para la goma base, utilizando una política EOQ y las siguientes restricciones respecto a las cantidades a adquirir: (i) El proveedor ofrece un descuento del 7% en el precio unitario para cantidades mayores a las 2000 bolsas, es decir, 50.000 Kg, (ii) El costo de transporte es de USD 4.000 (con una capacidad máxima de 25 toneladas, de acuerdo al proveedor logístico y el medio de transporte, (iii) La goma base puede ser almacenada por un periodo máximo de 4 meses, superado el cual su rendimiento y calidad bajan abruptamente. La empresa sugiere considerar este inciso como fundamental a la hora de calcular las cantidades a adquirir. Por tal motivo, considerando el consumo mensual de goma expuesto en la Tabla 3, el límite superior se fija en 45.000 Kg o 1800 bolsas y (iv) El plazo de entrega o LT es de un mes.

Por lo tanto, utilizando la Ecuación (3) resulta Q* = 1974,49, es decir 1975 bolsas de 25 Kg es la cantidad óptima a ordenar. Sin embargo, dicho valor implica una violación al límite superior establecido en las restricciones de cantidad. Por ello, y en concordancia con el tamaño de lote económico, se propone Q* max.permitido en 1800 bolsas.

El momento en el cual debe ser liberada esa orden se determina utilizando la Ecuación (1) y es ROP = 19,7 Bolsas/día x 30 días = 591 Bolsas.

El costo anual para Q*max.permitido realizando el mismo análisis que se utilizó para costear la política de la empresa es:

$$CT\ g.\ base\ Q^*max_{anual} = \\ \left(5.437,92\frac{bolsas}{a\|o} * \frac{USD\ 59,06}{bolsa}\right) + \left(5.437,92\frac{bolsas}{a\|o} * \frac{USD\ 820,18}{1800\ bolsas}\right) + \left(\frac{1800\ bolsas}{a\|o*bolsas} * \frac{USD\ 2,29}{a\|o*bolsas}\right)$$

Por lo tanto, el costo total anual para la goma base resulta igual a USD 327742,40/año.

Como se observa, no es posible alcanzar un ahorro, sino que los costos se incrementan en más de USD 3306,29 anuales, ya que el efecto que genera el costo de transporte sobre el precio del producto es tal que elimina las ventajas obtenidas por la disminución de pedidos. Por lo tanto, se propone mantener la política seguida por la empresa, realizando pedidos de 1000 bolsas cada vez que las existencias alcancen las 591 bolsas.

5. CONCLUSIONES

En el presente trabajo se ha desarrollado la optimización del Sistema de Inventario de Materias Primas de una PyME productora y comercializadora de golosinas, de modo de reducir costos optimizando los recursos y mejorando la operación en general de toda la empresa. Para el caso del azúcar, se propone la aplicación del modelo EOQ de Gestión de Inventario, ya que significaría ahorros monetarios para la organización. En cambio, en lo que respecta a la goma base, se propone seguir con la política adoptada por la empresa, ya que la aplicación del modelo EOQ traería aparejados mayores costos anuales.

La política planteada en el presente trabajo requiere de cambios y modificaciones del sistema actual, por lo tanto para lograr su implementación en forma efectiva, necesita del compromiso de todos los actores de la empresa.

En síntesis, se considera que la política de inventario de materias primas propuesta para una PyME productora de golosinas de Santa Fe, proporciona beneficios fácilmente medibles que justifican el esfuerzo y los recursos necesarios para su implementación.

6. REFERENCIAS

- [1] Chapman, Stephen. (2006). *Planificación y Control*. Distrito Federal. Ed. Pearson Educación. México.
- [2] Rossetti, Germán y Arcusin, Leticia. (2013). "Optimización del Sistema de Inventario en una Empresa Productora y Comercializadora de Helados". VII Congreso Argentino de Ingeniería Química. Rosario, Argentina.
- [3] Ballou Roland. (1999). Business Logistics Managment: Planning, Organicing and Controlling the Supply Chain. 4ª Edic. Prentice Hall. USA.
- [4] Chopra, Sunil y Meindl, Peter. (2008). *Administración de la Cadena de Suministro:* Estrategia, Planeación y Operación. Distrito Federal. Ed. Pearson Educación. México.
- [5] Mentzer John, De Witt William, Keebler James, Min Soonhong, Nix Nancy, Smith Carlo y Zacharia Zach (2001). Defining Supply Chain Management. *Journal of Bussiness Logistics*, v.22, n.2.

Agradecimientos

Los autores agradecen la contribución económica brindada por la Agencia Nacional de Promoción Científica y Tecnológica, a través del Fondo para la Investigación Científica y Tecnológica (FONCYT) por medio del Proyecto denominado "Diseño de un Modelo de Gestión para el Desarrollo de Productos en Pequeñas y Medianas Empresas Productoras de Alimentos" (PICT 2012 – Nº 1692) y a la Universidad Nacional del Litoral.